ON OPIALS INEQUALITY FOR F(N)

被引:14
作者
FINK, AM
机构
关键词
OPIALS INEQUALITY;
D O I
10.2307/2159583
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove inequalities of the type integral-0/h\f(i)(x)f(j)(x)\dx less-than-or-equal-to C(n, i, j, p)h2n - i - j + 1 - 2/p(integral-0/h\f(n)(x)\p dx)2/p when f(0) = f'(0) = ... = f(n - 1)(0) = 0. We assume that f(n-1) is absolutely continuous and f(n) is-an-element-of L(p)(0, h), with p greater-than-or-equal-to 1, n greater-than-or-equal-to 2, and 0 less-than-or-equal-to i less-than-or-equal-to j less-than-or-equal-to n - 1.
引用
收藏
页码:177 / 181
页数:5
相关论文
共 4 条
  • [1] FITZGERALD CH, 1984, OPIAL TYPE INEQUALIT, P25
  • [2] Mitrinovi~c D.S., 1991, INEQUALITIES FUNCTIO
  • [3] Mitrinovic D. S., 1970, ANAL INEQUALITIES, V1
  • [4] Opial Z., 1960, ANN POL MATH, V8, P29, DOI DOI 10.4064/AP-7-3-247-254