ON THE DIOPHANTINE EQUATION X-2 - (p(2m)

被引:0
作者
He, Bo [1 ]
Togbe, Alain [2 ]
Yuan, Pingzhi [3 ]
机构
[1] ABa Teachers Coll, Dept Math, Wenchuan 623000, Sichuan, Peoples R China
[2] Purdue Univ North Cent, Dept Math, Westville, IN 46391 USA
[3] South China Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R China
关键词
algebraic approximations; Thue's equations; elliptic curves;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime and m a positive integer. In this paper, it is shown that the equation in the title has at most four solutions in positive integers (X, Y).
引用
收藏
页码:31 / 44
页数:14
相关论文
共 20 条
[1]  
AKHTARI S, ACTA ARITH IN PRESS
[2]   The Diophantine equation aX4-bY2=1 [J].
Akhtari, Shabnam .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 630 :33-57
[3]  
Bennett M. A., P DIOPH AN REL FIELD, P7
[4]   ON THE METHOD OF THUE-SIEGEL [J].
CHUDNOVSKY, GV .
ANNALS OF MATHEMATICS, 1983, 117 (02) :325-382
[5]  
He B, 2008, PUBL MATH-DEBRECEN, V73, P417
[6]   Complete solution of the diophantine equation X(2)+1=dY(4) and a related family of quartic Thue equations [J].
Hua, CJ ;
Voutier, P .
JOURNAL OF NUMBER THEORY, 1997, 62 (01) :71-99
[7]  
Hua L.-K., 1982, INTRO NUMBER THEORY
[8]   Simple families of Thue inequalities [J].
Lettl, G ;
Pethö, A ;
Voutier, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (05) :1871-1894
[9]   ON DIOPHANTINE EQUATION AX4-BY2=C (C=1,4) [J].
LJUNGGRE.W .
MATHEMATICA SCANDINAVICA, 1967, 21 (02) :149-&
[10]  
Ljunggren, 1942, AVH NORSKE VID AKAD, V5, P1