AN AXIOMATIC APPROACH TO FUZZY PREFERENCE MODELING

被引:17
作者
FODOR, JC
机构
[1] Computer Center, L. Eötvös University, Budapest
关键词
PREFERENCE RELATION; STRICT PREFERENCE; INDIFFERENCE; INCOMPARABILITY; T-NORM; T-CONORM; IMPLICATION;
D O I
10.1016/0165-0114(92)90035-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose an axiomatic approach to the definition of fuzzy strict preference P, indifference I and incomparability J associated with a fuzzy preference relation R. Expressions for P, I and J are given via solving two systems of functional equations.
引用
收藏
页码:47 / 52
页数:6
相关论文
共 8 条
[1]   ON A FAMILY OF CONNECTIVES FOR FUZZY-SETS [J].
ALSINA, C .
FUZZY SETS AND SYSTEMS, 1985, 16 (03) :231-235
[2]   ON FUZZY IMPLICATION OPERATORS [J].
FODOR, JC .
FUZZY SETS AND SYSTEMS, 1991, 42 (03) :293-300
[3]   STRICT PREFERENCE RELATIONS BASED ON WEAK T-NORMS [J].
FODOR, JC .
FUZZY SETS AND SYSTEMS, 1991, 43 (03) :327-336
[4]  
LING CH, 1965, PUBL MATH-DEBRECEN, V12, P189
[5]  
Orlovsky S. A., 1978, Fuzzy Sets and Systems, V1, P155, DOI 10.1016/0165-0114(78)90001-5
[6]   ON FUZZY STRICT PREFERENCE, INDIFFERENCE, AND INCOMPARABILITY RELATIONS [J].
OVCHINNIKOV, S ;
ROUBENS, M .
FUZZY SETS AND SYSTEMS, 1992, 49 (01) :15-20
[7]   ON STRICT PREFERENCE RELATIONS [J].
OVCHINNIKOV, S ;
ROUBENS, M .
FUZZY SETS AND SYSTEMS, 1991, 43 (03) :319-326
[8]  
Roubens M., 1985, PREFERENCE MODELLING