Initial-Boundary Problem for Parabolic-Hyperbolic Equation with Loaded Summands

被引:21
作者
Sabitov, K. B. [1 ,2 ]
机构
[1] Volga Reg Social Humanitarian Acad, Ul Antonova Ovseenko 26, Samara 443090, Russia
[2] Inst Appl Res Republ Bashkortostan, Sterlitamak 453103, Russia
关键词
mixed-type equation with loaded summands; initial-boundary problem; uniqueness; existence; stability;
D O I
10.3103/S1066369X15060055
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we find necessary and sufficient conditions for uniqueness of solution to the initial-boundary problem for a loaded equation of mixed parabolic-hyperbolic type. The solution is constructed as a sum of a series in eigenfunctions of the corresponding one-dimensional problem on eigenvalues. In the proof of convergence of the series the problem of small denominators arises. Under certain conditions on these problems we obtain an estimate for a small denominator to be separated from zero that allows to prove the existence theorem in the class of regular solutions.
引用
收藏
页码:23 / 33
页数:11
相关论文
共 50 条
[41]   Initial-boundary problem for degenerate high order equation with fractional derivative [J].
Irgashev, B. Yu. .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (01) :170-180
[42]   T. D. Dzhuraev Problem for a Mixed Parabolic-Hyperbolic Type Equation of the Third Order [J].
A. Sopuev ;
B. Sh. Nuranov .
Lobachevskii Journal of Mathematics, 2025, 46 (1) :520-527
[43]   Well posedness analysis of a parabolic-hyperbolic free boundary problem for necrotic tumors growth [J].
Chen, Wei ;
Wei, Xuemei .
INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024, 17 (05)
[44]   On the Well-Posedness of an Initial-Boundary Value Problem for a Degenerate Heat Equation [J].
Zainullov, A. R. ;
Sabitov, K. B. .
MATHEMATICAL NOTES, 2024, 115 (1-2) :192-204
[46]   Initial-Boundary Value Problems for Equation of Oscillations of a Rectangular Plate [J].
Sabitov, K. B. .
RUSSIAN MATHEMATICS, 2021, 65 (10) :52-62
[47]   CONSERVATIVE SOLUTIONS TO THE FIRST INITIAL-BOUNDARY VALUE PROBLEM FOR A NONLINEAR VARIATIONAL WAVE EQUATION [J].
Xu, Lingfang ;
Yin, Gan ;
Hu, Yanbo .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2025, 9 (02) :263-282
[48]   First Initial-Boundary Value Problem for Parabolic Systems in a Semibounded Domain with Curvilinear Lateral Boundary [J].
Baderko, E. A. ;
Fedorov, K. D. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2025, 65 (01) :63-75
[49]   Solvability of an initial-boundary value problem for a nonlinear pseudoparabolic equation with degeneration [J].
Aitzhanov, S. E. ;
Tileuberdi, Zh ;
Sanat, G. .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 105 (01) :4-12
[50]   Numerical solution of initial-boundary problem for the Helmholtz equation on "discretization - optimization" [J].
Nurseitov, D. B. ;
Kassenov, S. E. .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2014, 75 (03) :114-120