共 50 条
Global well-posedness of Korteweg-de Vries equation in H-3/4(R)
被引:125
|作者:
Guo, Zihua
[1
]
机构:
[1] Peking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
来源:
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES
|
2009年
/
91卷
/
06期
基金:
美国国家科学基金会;
关键词:
Korteweg-de Vries equation;
Global well-posedness;
Low regularity;
DISPERSIVE EQUATIONS;
ILL-POSEDNESS;
REGULARITY;
SCATTERING;
KDV;
D O I:
10.1016/j.matpur.2009.01.012
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We prove that the Korteweg-de Vries initial-value problem is globally well-posed in H-3/4(R) and the modified Korteweg-de Vries initial-value problem is globally well-posed in H-1/4(R). The new ingredient is that we use directly the contraction principle to prove local well-posedness for KdV equation in H-3/4 by constructing some special resolution spaces ill order to avoid some 'logarithmic divergence' from the high-high interactions. Our local solution has almost the same properties as those for H-s (s > -3/4) solution which enable us to apply the 1-method to extend it to a global Solution. (C) 2009 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:583 / 597
页数:15
相关论文