Global well-posedness of Korteweg-de Vries equation in H-3/4(R)

被引:125
|
作者
Guo, Zihua [1 ]
机构
[1] Peking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2009年 / 91卷 / 06期
基金
美国国家科学基金会;
关键词
Korteweg-de Vries equation; Global well-posedness; Low regularity; DISPERSIVE EQUATIONS; ILL-POSEDNESS; REGULARITY; SCATTERING; KDV;
D O I
10.1016/j.matpur.2009.01.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the Korteweg-de Vries initial-value problem is globally well-posed in H-3/4(R) and the modified Korteweg-de Vries initial-value problem is globally well-posed in H-1/4(R). The new ingredient is that we use directly the contraction principle to prove local well-posedness for KdV equation in H-3/4 by constructing some special resolution spaces ill order to avoid some 'logarithmic divergence' from the high-high interactions. Our local solution has almost the same properties as those for H-s (s > -3/4) solution which enable us to apply the 1-method to extend it to a global Solution. (C) 2009 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:583 / 597
页数:15
相关论文
共 50 条
  • [31] Global well-posedness for Schrodinger equation with derivative in H 1/2(R)
    Miao, Changxing
    Wu, Yifei
    Xu, Guixiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (08) : 2164 - 2195
  • [32] Well-Posedness and Time Regularity for a System of Modified Korteweg-de Vries-Type Equations in Analytic Gevrey Spaces
    Boukarou, Aissa
    Guerbati, Kaddour
    Zennir, Khaled
    Alodhaibi, Sultan
    Alkhalaf, Salem
    MATHEMATICS, 2020, 8 (05)
  • [33] The Korteweg-de Vries equation in a cylindrical pipe
    V. A. Rukavishnikov
    O. P. Tkachenko
    Computational Mathematics and Mathematical Physics, 2008, 48 : 139 - 146
  • [34] On the singular solutions of the Korteweg-de Vries equation
    S. I. Pokhozhaev
    Mathematical Notes, 2010, 88 : 741 - 747
  • [35] CONTROL OF A KORTEWEG-DE VRIES EQUATION: A TUTORIAL
    Cerpa, Eduardo
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2014, 4 (01) : 45 - 99
  • [36] GLOBAL STABILIZATION OF A KORTEWEG-DE VRIES EQUATION WITH SATURATING DISTRIBUTED CONTROL
    Marx, Swann
    Cerpa, Eduardo
    Prieur, Christophe
    Andrieu, Vincent
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2017, 55 (03) : 1452 - 1480
  • [37] COMPACT SCHEMES FOR KORTEWEG-DE VRIES EQUATION
    Yin, Xiu-Ling
    Zhang, Cheng-Jian
    Zhang, Jing-Jing
    Liu, Yan-Qin
    THERMAL SCIENCE, 2017, 21 (04): : 1797 - 1806
  • [38] Generalized inversion of the Korteweg-de Vries equation
    Muccino, JC
    Bennett, AF
    DYNAMICS OF ATMOSPHERES AND OCEANS, 2002, 35 (03) : 227 - 263
  • [39] Accelerating solutions of the Korteweg-de Vries equation
    Winkler, Maricarmen A.
    Asenjo, Felipe A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (49)
  • [40] On the Korteweg-de Vries limit for the Boussinesq equation
    Hong, Younghun
    Yang, Changhun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 408 : 94 - 116