Global well-posedness of Korteweg-de Vries equation in H-3/4(R)

被引:125
|
作者
Guo, Zihua [1 ]
机构
[1] Peking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2009年 / 91卷 / 06期
基金
美国国家科学基金会;
关键词
Korteweg-de Vries equation; Global well-posedness; Low regularity; DISPERSIVE EQUATIONS; ILL-POSEDNESS; REGULARITY; SCATTERING; KDV;
D O I
10.1016/j.matpur.2009.01.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the Korteweg-de Vries initial-value problem is globally well-posed in H-3/4(R) and the modified Korteweg-de Vries initial-value problem is globally well-posed in H-1/4(R). The new ingredient is that we use directly the contraction principle to prove local well-posedness for KdV equation in H-3/4 by constructing some special resolution spaces ill order to avoid some 'logarithmic divergence' from the high-high interactions. Our local solution has almost the same properties as those for H-s (s > -3/4) solution which enable us to apply the 1-method to extend it to a global Solution. (C) 2009 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:583 / 597
页数:15
相关论文
共 50 条