2-COLORINGS IN S(T, T + 1, V)

被引:14
|
作者
GIONFRIDDO, M [1 ]
LO FARO, G [1 ]
机构
[1] FAC INGN REGGIO CALABRIA, I-89128 REGGIO DI CALALBRIA, ITALY
关键词
D O I
10.1016/0012-365X(93)90161-L
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S(t,k,v) be any nontrivial Steiner system. In this paper we prove the nonexistence of 2-colourings in Steiner systems S(t, t + 1, v) when t + 1 is an odd number. Further, we prove that if t + 1 is an even number and C is a blocking set of the system S(t, t + 1, v) then Absolute value of C = v/2.
引用
收藏
页码:263 / 268
页数:6
相关论文
共 50 条
  • [31] [r, s, t]-Colorings of graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    DISCRETE MATHEMATICS, 2007, 307 (02) : 199 - 207
  • [32] [r, s, t]-colorings of fans
    Liao, Wei
    Li, Mingchu
    ARS COMBINATORIA, 2015, 119 : 263 - 273
  • [33] DISTANCES FORBIDDEN BY 2-COLORINGS OF Q3 AND AN
    CHOW, T
    DISCRETE MATHEMATICS, 1993, 115 (1-3) : 95 - 102
  • [34] Practical Algorithms for Low-Discrepancy 2-Colorings
    Kliemann, Lasse
    PANORAMA OF DISCREPANCY THEORY, 2014, 2107 : 459 - 484
  • [35] Unavoidable chromatic patterns in 2-colorings of the complete graph
    Caro, Yair
    Hansberg, Adriana
    Montejano, Amanda
    JOURNAL OF GRAPH THEORY, 2021, 97 (01) : 123 - 147
  • [36] Perfect 2-Colorings of k-Regular Graphs
    Piri, Farzaneh
    Semnani, Saeed Mohammadian
    KYUNGPOOK MATHEMATICAL JOURNAL, 2020, 60 (02): : 349 - 359
  • [37] QUASI-RANDOM 2-COLORINGS OF POINT SETS
    BECK, J
    RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (03) : 289 - 302
  • [38] [1, 1, t]-Colorings of Complete Graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    Tuza, Zsolt
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 1041 - 1050
  • [39] 2-COLORINGS OF A DENSE SUBGROUP OF QN THAT FORBID MANY DISTANCES
    JOHNSON, PD
    DISCRETE MATHEMATICS, 1990, 79 (02) : 191 - 195
  • [40] [r, s, t]-Colorings of Graph Products
    Dekar, Lyes
    Effantin, Brice
    Kheddouci, Hamamache
    GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1135 - 1147