In situ-produced cosmogenic helium (3Hec) provides a new tool for constraining histories of Quaternary geomorphic surfaces. Before general application of the technique, however, the systematics and production rates of 3Hecmust be well understood. In a companion study, 3He and 10Be data from sandstone and granite boulders in the Dry Valleys region of Antarctica have been used to constrain the ages of an important moraine sequence formed by the Taylor Glacier. Data from these deposits also provide information about the systematics of 3He in quartz that has important implications for geochronology based on 3Hec. In contrast to previous results from olivine and clinopyroxene, crushing quartz in vacuo releases helium with high 3He/4He ratios (up to 148 × Ra, where Rais the atmospheric 3He/4He ratio), indicating that crushing cannot be used to determine the isotopic composition of trapped (i.e., noncosmogenic) helium in quartz. Analysis of 3He in different size fractions of the same samples indicates significant 3He loss not predicted by existing 3He diffusion data for quartz. The origin of the discrepancy is not clear, but loss from these samples is not as significant as suggested by the limited data of previous studies. © 1994 Academic Press Ltd.