INTEGRAL-REPRESENTATIONS OF CONTINUOUS-FUNCTIONS

被引:0
作者
LI, ZH
机构
来源
CHINESE SCIENCE BULLETIN | 1991年 / 36卷 / 12期
关键词
CONTINUOUS FUNCTION; INTEGRAL REPRESENTATION; SUPERPROCESS;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:979 / 983
页数:5
相关论文
共 50 条
[31]   Integral Representations of Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers [J].
Dyachenko, Alexander ;
Karp, Dmitrii .
MATHEMATICS, 2022, 10 (20)
[32]   Integral representations of functions and Addison-type series for mathematical constants [J].
Coffey, Mark W. .
JOURNAL OF NUMBER THEORY, 2015, 157 :79-98
[33]   Sobolev-type integral representations for functions defined on Carnot groups [J].
Plotnikova E.A. .
Siberian Advances in Mathematics, 2008, 18 (4) :275-287
[34]   A characterization of Herglotz-Nevanlinna functions in two variables via integral representations [J].
Luger, Annemarie ;
Nedic, Mitja .
ARKIV FOR MATEMATIK, 2017, 55 (01) :199-216
[35]   Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers: More on Integral Representations [J].
Dyachenko, A. ;
Karp, D. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (12) :2764-2776
[36]   Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers: More on Integral Representations [J].
A. Dyachenko ;
D. Karp .
Lobachevskii Journal of Mathematics, 2021, 42 :2764-2776
[37]   On the feynman integral in the space of continuous functions on a compact set. III [J].
Koval'Chik L.M. ;
Koval'Chik Yu.I. .
Journal of Mathematical Sciences, 1999, 96 (1) :2834-2837
[38]   On Volterra partial integral equations in the space of continuous functions of three variables [J].
Frolova E.V. .
Journal of Mathematical Sciences, 2007, 147 (1) :6538-6542
[39]   Euler-Type Integral Representations for Bivariate Mittag-Leffler-Type Functions [J].
A. Hasanov ;
E. Karimov .
Cybernetics and Systems Analysis, 2025, 61 (3) :401-410
[40]   Integral representations of functions and embedding theorems for multianisotropic spaces on the plane with one anisotropy vertex [J].
G. A. Karapetyan .
Journal of Contemporary Mathematical Analysis, 2016, 51 :269-281