CLASSIFICATION OF NO-OSCILLATION CASES FOR EQUATION X+P(T)X++Q(T)X=0 WHERE Q(T) IS OF CONSTANT SIGN

被引:0
作者
LEVIN, AY
机构
来源
DOKLADY AKADEMII NAUK SSSR | 1966年 / 171卷 / 05期
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:1037 / &
相关论文
共 50 条
[41]   Numerical stability and oscillation of the Runge-Kutta methods for equation x′(t)=ax(t)+a0x(M[t+NM]) [J].
Minghui Song ;
MZ Liu .
Advances in Difference Equations, 2012
[42]   Existence of closed solutions of an equation x=f(t,x), where fx′(t,x) is weakly convex or concave in x [J].
Andersen, KM ;
Sandqvist, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 229 (02) :480-500
[43]   Boundary control of process described by equation k(x)[k(x)ux(x,t)]x - utt(x,t) = 0 [J].
Il'in, V.A. .
Doklady Akademii Nauk, 2002, 386 (02) :156-160
[44]   On the Positive Solutions of Operator Equation xs + A* X-t A= Q [J].
Zheng, Yan-Ping ;
Yang, Hui .
PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE OF MATRICES AND OPERATORS (MAO 2012), 2012, :103-106
[45]   On solutions for the matrix equation Xs+A*X-t A=Q [J].
Yang, Yueting ;
Duan, Fujian ;
Zhao, Xue .
ADVANCES IN MATRIX THEORY AND APPLICATIONS, 2006, :20-23
[46]   Lie symmetries of the equation ut (x, t)+g(u)ux (x, t)=0 [J].
Ouhadan, A. ;
El Kinani, E. H. .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2007, 17 (01) :95-106
[47]   Lie Symmetries of the Equation ut(x, t) + g(u)ux(x, t)  =  0 [J].
A. Ouhadan ;
E. H. El Kinani .
Advances in Applied Clifford Algebras, 2007, 17 :95-106
[48]   Boundary control of the process described by the equation k(x)[k(x)ux(x, t)]x-utt(x, t)=0 [J].
Il'in, VA .
DOKLADY MATHEMATICS, 2002, 66 (02) :184-186
[49]   EXISTENCE OF SOLUTIONS OF X''+X+G(X)=P(T),X(0)=0=X(PI) [J].
KANNAN, R ;
ORTEGA, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 96 (01) :67-70
[50]   一种形如(t)+P(t)+(t)+Q(t)x(t)=0方程的稳定性条件 [J].
赵临龙 ;
王彦海 .
甘肃教育学院学报(自然科学版), 1998, (02) :15-16