SU(3) CHERN-SIMONS FIELD-THEORY IN 3-MANIFOLDS

被引:2
作者
GUADAGNINI, E
PILO, L
机构
[1] Dipartimento di Fisica dell'Università di Pisa, Instituto Nazionale di Fisica Nucleare, Sezione di Pisa, 56100 Pisa, Piazza Torricelli
关键词
SU(3) CHERN-SIMONS FIELD THEORY; 3-MANIFOLDS;
D O I
10.1016/0393-0440(94)90041-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the solution of the non-Abelian SU (3) Chern-Simons field theory defined in a generic three-manifold which is closed, connected and orientable. The surgery rules, which permit us to solve the theory, are derived and several examples of vacuum expectation values of Wilson line operators are computed. The three-manifold invariant associated with the non-Abelian SU (3) Chern-Simons model is defined and its values are computed for various three-manifolds.
引用
收藏
页码:365 / 404
页数:40
相关论文
共 26 条
[11]   CALCULUS FOR FRAMED LINKS IN S3 [J].
KIRBY, R .
INVENTIONES MATHEMATICAE, 1978, 45 (01) :35-56
[12]   THE 3-MANIFOLD INVARIANTS OF WITTEN AND RESHETIKHIN-TURAEV FOR SL(2, C) [J].
KIRBY, R ;
MELVIN, P .
INVENTIONES MATHEMATICAE, 1991, 105 (03) :473-545
[13]  
KNIZHNIK VG, 1984, NUCL PHYS B, V247, P83, DOI 10.1016/0550-3213(84)90374-2
[14]   MONODROMY REPRESENTATIONS OF BRAID-GROUPS AND YANG-BAXTER EQUATIONS [J].
KOHNO, T .
ANNALES DE L INSTITUT FOURIER, 1987, 37 (04) :139-160
[15]   TOPOLOGICAL INVARIANTS FOR 3-MANIFOLDS USING REPRESENTATIONS OF MAPPING CLASS-GROUPS .1. [J].
KOHNO, T .
TOPOLOGY, 1992, 31 (02) :203-230
[16]   A REPRESENTATION OF ORIENTABLE COMBINATORIAL 3-MANIFOLDS [J].
LICKORISH, WBR .
ANNALS OF MATHEMATICS, 1962, 76 (03) :531-&
[17]   INVARIANTS FOR 3-MANIFOLDS FROM THE COMBINATORICS OF THE JONES POLYNOMIAL [J].
LICKORISH, WBR .
PACIFIC JOURNAL OF MATHEMATICS, 1991, 149 (02) :337-347
[18]   CLASSICAL AND QUANTUM CONFORMAL FIELD-THEORY [J].
MOORE, G ;
SEIBERG, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 123 (02) :177-254
[19]  
MORTON H, 1992, KNOTS 90
[20]   INVARIANTS OF 3-MANIFOLDS VIA LINK POLYNOMIALS AND QUANTUM GROUPS [J].
RESHETIKHIN, N ;
TURAEV, VG .
INVENTIONES MATHEMATICAE, 1991, 103 (03) :547-597