Error Estimates for Triangular and Tetrahedral Finite Elements in Combination with a Trajectory Approximation of the First Derivatives for Advection-Diffusion Equations

被引:14
作者
Chen, H. [1 ]
Lin, Q. [2 ]
Shaidurov, V. V. [3 ,4 ]
Zhou, J. [5 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[3] Russian Acad Sci, Inst Computat Modeling, Siberian Branch, Krasnoyarsk 660036, Russia
[4] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
[5] Hebei Univ Technol, Sch Sci, Tianjin 300160, Peoples R China
关键词
modified method of characteristics; triangular linear element; tetrahedral linear element; integral identities; uniform error estimate;
D O I
10.1134/S1995423911040070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a modified method of characteristics in combination with integral identities of triangular and tetrahedral linear elements is used to prove a uniform optimal-order error estimate that depends only on the initial data and right-hand side, but not on a scaling parameter epsilon, for multidimensional time-dependent advection-diffusion equations.
引用
收藏
页码:345 / 362
页数:18
相关论文
共 23 条
[11]  
Grossmann C., 2007, NUMERICAL TREATMENT
[12]  
Johnson C., 1987, NUMERICAL SOLUTION P
[13]   ON SUPERCONVERGENCE TECHNIQUES [J].
KRIZEK, M ;
NEITTAANMAKI, P .
ACTA APPLICANDAE MATHEMATICAE, 1987, 9 (03) :175-198
[14]  
Lin Q., 2006, FINITE ELEMENT METHO
[15]  
[林群 LIN Qun], 2009, [数学的实践与认识, Mathematics in Practice and Theory], V39, P200
[16]  
Peaceman DW., 1977, FUNDAMENTALS NUMERIC
[17]   ON THE TRANSPORT-DIFFUSION ALGORITHM AND ITS APPLICATIONS TO THE NAVIER-STOKES EQUATIONS [J].
PIRONNEAU, O .
NUMERISCHE MATHEMATIK, 1982, 38 (03) :309-332
[18]  
Roos HG, 2008, SPR SER COMPUT MATH, V24, P1
[19]  
Shaidurov V.V., 1995, MULTIGRID METHODS FI
[20]  
Thomee, 1984, GALERKIN FINITE ELEM