MULTIPLIERS AND IDEALS IN 2ND CONJUGATE ALGEBRAS RELATED TO LOCALLY COMPACT-GROUPS

被引:39
作者
GHAHRAMANI, F [1 ]
LAU, ATM [1 ]
机构
[1] UNIV ALBERTA,DEPT MATH SCI,EDMONTON,AB T6G 2G1,CANADA
关键词
D O I
10.1006/jfan.1995.1104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a locally compact group. In this paper we study compact or weakly compact multipliers on the second conjugate algebras L'(G)** and M(G)**. We prove, among other things, that G is amenable if and only if there is a non-zero compact or weakly compact right multiplier on L'(G)** or M(G)**. We show that if G is sigma-compact non-compact, then L'(G)** cannot have any non-zero weakly compact left multipliers T with T(n)(1) not equal 0 for some n is an element of L'(G)**. We also study maximal regular ideals of L'(G, w) when G is a locally compact abelian group and w is a weight function on G, and A(p)(G)**, 1 < p < infinity on a locally compact group G. (C) 1995 Academic Press, Inc.
引用
收藏
页码:170 / 191
页数:22
相关论文
共 45 条
[1]   NON-ABELIAN PONTRIAGIN DUALITY [J].
AKEMANN, CA ;
WALTER, ME .
DUKE MATHEMATICAL JOURNAL, 1972, 39 (03) :451-&
[2]  
AKEMANN CA, 1967, PAC J MATH, V22, P1
[3]  
ARENS R, 1951, P AM MATH SOC, V2, P939
[4]  
Bonsall FF., 1973, COMPLETE NORMED ALGE
[5]  
BOURGAIN RD, 1983, LECTURE NOTES MATH, V993
[6]  
CIVIN P, 1964, PAC J MATH, V11, P181
[7]  
Civin P., 1962, MATH SCAND, V11, P161
[8]  
Conway JB, 1985, COURSE FUNCTIONAL AN
[9]   APPLICATION OF LITTLEWOOD-PALEY THEORY IN HARMONIC-ANALYSIS [J].
COWLING, M .
MATHEMATISCHE ANNALEN, 1979, 241 (01) :83-96
[10]  
DAY M., 1961, ILLINOIS J MATH, V5, P585