AN INVARIANCE-PRINCIPLE FOR A FINITE DIMENSIONAL STOCHASTIC-APPROXIMATION METHOD IN A HILBERT-SPACE

被引:8
作者
NIXDORF, R
机构
关键词
D O I
10.1016/0047-259X(84)90030-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:252 / 260
页数:9
相关论文
共 10 条
[1]  
BERGER E, 1982, UNPUB NOTE INVARIANC
[2]  
BERTRAN JP, 1973, CR ACAD SCI A MATH, V276, P613
[3]  
FABIAN V, 1968, ANN MATH STATIST, V38, P1327
[4]  
LINDQUIST A, 1974, APPL MATH OPT, V1, P355
[5]  
NIXDORF R, 1982, MITT MATH SEM GIESSE, V154
[6]  
PANTEL M, 1979, THESIS
[7]   A STOCHASTIC APPROXIMATION METHOD [J].
ROBBINS, H ;
MONRO, S .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (03) :400-407
[8]  
Salov G. I., 1974, Cybernetics, V10, P359, DOI 10.1007/BF01068962
[9]  
WALK H, 1980, J REINE ANGEW MATH, V314, P117
[10]   INVARIANCE PRINCIPLE FOR ROBBINS-MONRO PROCESS IN A HILBERT-SPACE [J].
WALK, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 39 (02) :135-150