FINDING ALL MINIMAL ELEMENTS OF A FINITE PARTIALLY ORDERED SET BY GENETIC ALGORITHM WITH A PRESCRIBED PROBABILITY

被引:0
作者
Studniarski, Marcin [1 ]
机构
[1] Univ Lodz, Fac Math & Comp Sci, S Banacha 22, PL-90338 Lodz, Poland
来源
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION | 2011年 / 1卷 / 03期
关键词
Genetic algorithm; Markov chain; vector optimization; stopping criteria;
D O I
10.3934/naco.2011.1.389
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a general Markov chain model of genetic algorithm, we establish an upper bound for the number of iterations which must be executed in order to find, with a prescribed probability, an optimal solution in a finite multiobjective optimization problem.
引用
收藏
页码:389 / 398
页数:10
相关论文
共 8 条
[1]   Convergence criteria for genetic algorithms [J].
Greenhalgh, D ;
Marshall, S .
SIAM JOURNAL ON COMPUTING, 2000, 30 (01) :269-282
[2]   General Cardinality Genetic Algorithms [J].
Koehler, Gary J. ;
Bhattacharyya, Siddhartha ;
Vose, Michael D. .
EVOLUTIONARY COMPUTATION, 1997, 5 (04) :439-459
[3]  
Reeves C., 2003, GENETIC ALGORITHMS P
[4]   Structural search spaces and genetic operators [J].
Rowe, JE ;
Vose, MD ;
Wright, AH .
EVOLUTIONARY COMPUTATION, 2004, 12 (04) :461-493
[5]  
Rudolph G, 2000, IEEE C EVOL COMPUTAT, P1010, DOI 10.1109/CEC.2000.870756
[6]  
STUDNIARSKI M, 2009, 12 NAT C EV COMP GLO, P173
[7]  
Studniarski M, 2010, LECT NOTES COMPUT SC, V6238, P697, DOI 10.1007/978-3-642-15844-5_70
[8]  
Vose Michael D., 1999, COM ADAP SY