FRACTAL STRUCTURES OF SPHEROIDAL CHAOTIC ATTRACTORS

被引:4
作者
KLEIN, M [1 ]
BAIER, G [1 ]
机构
[1] UNIV TUBINGEN,INST CHEM PLANT PHYSIOL,W-7400 TUBINGEN 1,GERMANY
来源
PHYSICA A | 1992年 / 191卷 / 1-4期
关键词
D O I
10.1016/0378-4371(92)90584-D
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A three-dimensional generic map exhibiting spheroidal attractors of all types of dynamics possible in three dimensions is introduced. The map is designed to easily invert the stability features of the spheroidal attractors giving rise to repellors or basin boundaries of locally similar geometric properties. For the three different types of ordinary chaos with one positive Lyapunov characteristic exponent a criterion is provided for the close correlation between chaotic dynamics and fractal structures.
引用
收藏
页码:564 / 570
页数:7
相关论文
共 9 条
  • [1] BAIER G, UNPUB PHYS LETT A
  • [2] AN OPTIMIZED BOX-ASSISTED ALGORITHM FOR FRACTAL DIMENSIONS
    GRASSBERGER, P
    [J]. PHYSICS LETTERS A, 1990, 148 (1-2) : 63 - 68
  • [3] Kaplan J., 1978, LECT NOTES MATH, V730, P228
  • [4] KLEIN M, 1991, CHAOTIC HIERARCHY, P1
  • [5] LIBERT W, 1991, REIHE PHYSIK, V4
  • [6] LONG-RANGE ORDER IN THE SCALING BEHAVIOR OF HYPERBOLIC DYNAMICAL-SYSTEMS
    PAOLI, P
    POLITI, A
    BADII, R
    [J]. PHYSICA D, 1989, 36 (03): : 263 - 286
  • [7] NOWHERE DIFFERENTIABLE BOUNDARIES IN DIFFERENTIABLE SYSTEMS - A PROPOSED EXPLANATION
    PEINKE, J
    KLEIN, M
    KITTEL, A
    BAIER, G
    PARISI, J
    STOOP, R
    HUDSON, JL
    ROSSLER, OE
    [J]. EUROPHYSICS LETTERS, 1991, 14 (07): : 615 - 620
  • [8] PEINKE J, 1991, BIFURCATION CHAOS, V1, P599
  • [9] ROHRICHT B, 1987, PHYSICS STRUCTURE FO, V37, P275