HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 INTEGRATION PROTEIN - DNA-SEQUENCE REQUIREMENTS FOR CLEAVING AND JOINING REACTIONS

被引:104
作者
SHERMAN, PA
DICKSON, ML
FYFE, JA
机构
关键词
D O I
10.1128/JVI.66.6.3593-3601.1992
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Using purified integration protein (IN) from human immunodeficiency virus (HIV) type 1 and oligonucleotide mimics of viral and target DNA, we have investigated the DNA sequence specificity of the cleaving and joining reactions that take place during retroviral integration. The first reaction in this process is selective endonucleolytic cleaving of the viral DNA terminus that generates a recessed 3' OH group. This 3' OH group is then joined to a 5' phosphoryl group located at a break in the target DNA. We found that the conserved CA located close to the 3' end of the plus strand of the U5 viral terminus (also present on the minus strand of the U3 terminus) was required for both cleaving and joining reactions. Six bases of HIV U5 or U3 DNA at the ends of model substrates were sufficient for nearly maximal levels of selective endonucleolytic cleaving and joining. However, viral sequence elements upstream of the terminal 6 bases could also affect the efficiencies of the cleaving and joining reactions. The penultimate base (C) on the minus strand of HIV U5 was required for optimal joining activity. A synthetic oligonucleotide mimic of the putative in vivo viral "DNA" substrate for HIV IN, a molecule that contained a terminal adenosine 5'-phosphate (rA) on the minus strand, was indistinguishable in the cleaving and joining reactions from the DNA substrate containing deoxyadenosine instead of adenosine 5'-phosphate at the terminal position. Single-stranded DNA served as an in vitro integration target for HIV IN. The DNA sequence specificity of the joining reaction catalyzed in the reverse direction was also investigated.
引用
收藏
页码:3593 / 3601
页数:9
相关论文
共 30 条
[1]   RETROVIRAL INTEGRATION - STRUCTURE OF THE INITIAL COVALENT PRODUCT AND ITS PRECURSOR, AND A ROLE FOR THE VIRAL IN PROTEIN [J].
BROWN, PO ;
BOWERMAN, B ;
VARMUS, HE ;
BISHOP, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (08) :2525-2529
[2]  
BUCHOW HD, 1989, BLUTTRANSFUS, V32, P402
[3]   SEQUENCE REQUIREMENTS FOR INTEGRATION OF MOLONEY MURINE LEUKEMIA-VIRUS DNA INVITRO [J].
BUSHMAN, FD ;
CRAIGIE, R .
JOURNAL OF VIROLOGY, 1990, 64 (11) :5645-5648
[4]   RETROVIRAL DNA INTEGRATION DIRECTED BY HIV INTEGRATION PROTEIN INVITRO [J].
BUSHMAN, FD ;
FUJIWARA, T ;
CRAIGIE, R .
SCIENCE, 1990, 249 (4976) :1555-1558
[6]  
CHOW S, IN PRESS SCIENCE
[7]   GENETIC-RECOMBINATION OF HUMAN IMMUNODEFICIENCY VIRUS [J].
CLAVEL, F ;
HOGGAN, MD ;
WILLEY, RL ;
STREBEL, K ;
MARTIN, MA ;
REPASKE, R .
JOURNAL OF VIROLOGY, 1989, 63 (03) :1455-1459
[8]   MUTANTS AND PSEUDOREVERTANTS OF MOLONEY MURINE LEUKEMIA-VIRUS WITH ALTERATIONS AT THE INTEGRATION SITE [J].
COLICELLI, J ;
GOFF, SP .
CELL, 1985, 42 (02) :573-580
[9]   SEQUENCE AND SPACING REQUIREMENTS OF A RETROVIRUS INTEGRATION SITE [J].
COLICELLI, J ;
GOFF, SP .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 199 (01) :47-59
[10]   THE IN PROTEIN OF MOLONEY MURINE LEUKEMIA-VIRUS PROCESSES THE VIRAL-DNA ENDS AND ACCOMPLISHES THEIR INTEGRATION INVITRO [J].
CRAIGIE, R ;
FUJIWARA, T ;
BUSHMAN, F .
CELL, 1990, 62 (04) :829-837