INVERSE ROMAN DOMINATION IN GRAPHS

被引:5
|
作者
Kumar, M. Kamal [1 ]
Reddy, L. Sudershan [2 ]
机构
[1] VTU Belgaum, Belgaum, Karnataka, India
[2] CMR Inst Technol, Dept Math, Bangalore, Karnataka, India
关键词
Domination number; inverse domination number; roman domination number;
D O I
10.1142/S1793830913500110
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the article in Scientific American [7], Michael A Henning and Stephen T Hedetniemi explored the strategy of defending the Roman Empire. Cockayne defined Roman dominating function (RDF) on a Graph G = (V, E) to be a function f : V -> {0, 1, 2} satisfying the condition that every vertex u for which f(upsilon) = 0 is adjacent to at least one vertex upsilon for which f(upsilon) = 2. For a real valued function f : V -> R the weight of f is w(f) = Sigma(upsilon is an element of V) f(v). The Roman domination number (RDN) denoted by (gamma R)(G) is the minimum weight among all RDF in G. If V - D contains a roman dominating function f(1) : V. {0, 1, 2}. "D" is the set of vertices upsilon for which f(v) > 0. Then f1 is called Inverse Roman Dominating function (IRDF) on a graph G w.r.t. f. The inverse roman domination number (IRDN) denoted by gamma(1)(R) (G) is the minimum weight among all IRDF in G. In this paper we find few results of IRDN.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Roman and inverse Roman domination in graphs
    Zaman, Zulfiqar
    Kumar, M. Kamal
    Ahmad, Saad Salman
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2018, 24 (03) : 142 - 150
  • [2] Inverse double Roman domination in graphs
    D' Souza, Wilma Laveena
    Chaitra, V
    Kumara, M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (06)
  • [3] Roman domination in graphs
    University of Victoria, Victoria, BC, V8W 3P4, Canada
    不详
    不详
    1600, 11-22 (March 6, 2004):
  • [4] Roman domination in graphs
    Cockayne, EJ
    Dreyer, PA
    Hedetniemi, SM
    Hedetniemi, ST
    DISCRETE MATHEMATICS, 2004, 278 (1-3) : 11 - 22
  • [5] INVERSE DOMINATION IN GRAPHS
    KULLI, VR
    SIGARKANTI, SC
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1991, 14 (12): : 473 - 475
  • [6] Complexity of Roman {2}-domination and the double Roman domination in graphs
    Padamutham, Chakradhar
    Palagiri, Venkata Subba Reddy
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 1081 - 1086
  • [7] Perfect Domination, Roman Domination and Perfect Roman Domination in Lexicographic Product Graphs
    Cabrera Martinez, A.
    Garcia-Gomez, C.
    Rodriguez-Velazquez, J. A.
    FUNDAMENTA INFORMATICAE, 2022, 185 (03) : 201 - 220
  • [8] Signed Roman domination in graphs
    Ahangar, H. Abdollahzadeh
    Henning, Michael A.
    Loewenstein, Christian
    Zhao, Yancai
    Samodivkin, Vladimir
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) : 241 - 255
  • [9] Roman domination in signed graphs
    Joseph, James
    Joseph, Mayamma
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023, 8 (02) : 349 - 358
  • [10] Signed Roman -Domination in Graphs
    Henning, Michael A.
    Volkmann, Lutz
    GRAPHS AND COMBINATORICS, 2016, 32 (01) : 175 - 190