A GENERAL SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS

被引:0
|
作者
Xiong, Liangpeng [1 ]
Liu, Xiaoli [1 ]
机构
[1] Chengdu Univ Technol, Coll Engn & Tech, Leshan 614000, Sichuan, Peoples R China
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2012年 / 36卷 / 02期
关键词
Analytic Functions; Univalent Function; Subordination; Convex; Closeto-Convex;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this present work, we consider a general subclass C*[A, B] of closeto-convexfunctions, which denote by f(z) = z +Sigma(infinity)(n=2)a(n)z(n) in U = {z : |z| < 1} and which satisfy the following condition: vertical bar(zf'(z))'/g0(z) - 1 vertical bar<vertical bar A - B(zf'(z))'/g'(z))vertical bar , (-1 <= B < A <= 1), where g(z) is convex univalent function in U. It gives a sufficient condition forfunctions to belong to the class investigated. Moreover, we derive some propertiesincluding the coefficient bounds as well as distortion theorem. Some radius problemsand relationship with other class are also solved. The results presented here wouldgeneralize many earlier work.
引用
收藏
页码:251 / 260
页数:10
相关论文
共 50 条
  • [31] On a Subclass of Close-to-Convex Mappings
    Xu, Qinghua
    Liu, Taishun
    Liu, Xiaosong
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (02) : 275 - 286
  • [32] On a Subclass of Close-to-Convex Mappings
    Qinghua Xu
    Taishun Liu
    Xiaosong Liu
    Complex Analysis and Operator Theory, 2015, 9 : 275 - 286
  • [33] Sharp distortion theorems for some subclass of close-to-convex functions
    Kanas, S.
    Orlowska-Puzio, J.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 843 - 850
  • [34] Fekete–Szegö Problem for a Certain Subclass of Close-to-convex Functions
    Bogumiła Kowalczyk
    Adam Lecko
    Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38 : 1393 - 1410
  • [35] On a subclass of close-to-convex harmonic mappings
    Sun, Yong
    Jiang, Yue-Ping
    Rasila, Antti
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (12) : 1627 - 1643
  • [36] A subclass of close-to-convex harmonic mappings
    Nagpal, Sumit
    Ravichandran, V.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (02) : 204 - 216
  • [37] On a subclass of harmonic close-to-convex mappings
    Nirupam Ghosh
    A. Vasudevarao
    Monatshefte für Mathematik, 2019, 188 : 247 - 267
  • [38] On a subclass of close-to-convex harmonic mappings
    Rajbala
    Prajapat, Jugal K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (06)
  • [39] On a subclass of harmonic close-to-convex mappings
    Ghosh, Nirupam
    Vasudevarao, A.
    MONATSHEFTE FUR MATHEMATIK, 2019, 188 (02): : 247 - 267
  • [40] A New Subclass of Meromorphic Multivalent Close-to-Convex Functions Associated with Janowski Functions
    Arif, Muhammad
    Raza, Mohsan
    Ahmad, Bakhtiar
    FILOMAT, 2016, 30 (09) : 2389 - 2395