A GENERALIZATION OF FAN CONDITION FOR HAMILTONICITY, PANCYCLICITY, AND HAMILTONIAN CONNECTEDNESS

被引:31
作者
BEDROSSIAN, P [1 ]
CHEN, G [1 ]
SCHELP, RH [1 ]
机构
[1] MEMPHIS STATE UNIV,DEPT MATH,MEMPHIS,TN 38152
关键词
D O I
10.1016/0012-365X(93)90476-A
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A weakened version of Fan's condition for Hamiltonicity is shown to be sufficient for a 2-connected graph to be pancyclic (with a few exceptions). Also, a similar condition is shown to be sufficient for a 3-connected graph to be Hamiltonian-connected. These results generalize the earlier work of Benhocine and Wodja (1987).
引用
收藏
页码:39 / 50
页数:12
相关论文
共 6 条
[1]   THE GENG-HUA FAN CONDITIONS FOR PANCYCLIC OR HAMILTON-CONNECTED GRAPHS [J].
BENHOCINE, A ;
WOJDA, AP .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1987, 42 (02) :167-180
[2]  
Bondy J.A., 1971, DISCRETE MATH, V1, P121, DOI DOI 10.1016/0012-365X(71)90019-7
[3]   METHOD IN GRAPH THEORY [J].
BONDY, JA ;
CHVATAL, V .
DISCRETE MATHEMATICS, 1976, 15 (02) :111-135
[4]   NEW SUFFICIENT CONDITIONS FOR CYCLES IN GRAPHS [J].
FAN, GH .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (03) :221-227
[5]  
Ore O., 1960, AM MATH MON, V67, P55, DOI [10.2307/2308928, DOI 10.2307/2308928]
[6]   A CYCLE STRUCTURE THEOREM FOR HAMILTONIAN GRAPHS [J].
SCHMEICHEL, EF ;
HAKIMI, SL .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 45 (01) :99-107