MULTIDIMENSIONAL STABILITY OF TRAVELING WAVES IN A BISTABLE REACTION-DIFFUSION EQUATION .2.

被引:74
作者
LEVERMORE, CD [1 ]
XIN, JX [1 ]
机构
[1] MATH SCI RES INST,BERKELEY,CA 94720
基金
美国国家科学基金会;
关键词
D O I
10.1080/03605309208820908
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the planar traveling wave solutions of a bistable reaction-diffusion equation are stable in L(loc)2(R(n)) for n greater-than-or-equal-to 2, provided the initial perturbation is small and localized in some sense. In order to obtain control on the perturbation globally in time, we estimate lower bounds of a Lyapunov functional using the maximum principle, and spectral theory.
引用
收藏
页码:1901 / 1924
页数:24
相关论文
共 11 条
[1]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[2]  
BERESTYCKI H, IN PRESS SOME QUALIT
[3]  
FIFE PC, 1977, ARCH RATION MECH AN, V65, P355
[5]  
HENRY D, LECTURE NOTES MATH, V840
[7]  
Li C.M., 1989, THESIS NEW YORK U
[8]  
PAZY A, 1983, APPLIED MATH SCI, V44
[9]   STABILITY OF WAVES OF NONLINEAR PARABOLIC-SYSTEMS [J].
SATTINGER, DH .
ADVANCES IN MATHEMATICS, 1976, 22 (03) :312-355
[10]   LYAPUNOV STABILITY OF GROUND-STATES OF NONLINEAR DISPERSIVE EVOLUTION-EQUATIONS [J].
WEINSTEIN, MI .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (01) :51-67