ON THE HURWITZ PRODUCT OF FORMAL POWER-SERIES AND AUTOMATA

被引:4
作者
KUSTER, G
机构
[1] Institut für Algebra und Diskrete Mathematik, Abteilung für Theoretische Informatik, Technische Universität Wien, A-1040 Wien
关键词
D O I
10.1016/0304-3975(91)90278-A
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Hurwitz (shuffle) product defined on formal power series is generalized to matrices and therefore to automata. The resulting constructions are then used to study commutative power series and abstract families of power series. In particular, the families of power series resulting from applying the generalized wedge operator to semi-AFPs and AFPs are characterized.
引用
收藏
页码:261 / 273
页数:13
相关论文
共 8 条
[1]  
Eilenberg S, 1974, AUTOMATA LANGUAGES M, VA
[2]  
Ginsburg S, 1975, ALGEBRAIC AUTOMATA T
[3]  
GOLDSTINE J, 1979, LECTURE NOTES COMPUT, V71, P271
[4]  
Graham A., 2018, KRONECKER PRODUCTS M
[5]  
KUESTER G, 1986, THESIS
[6]  
KUICH W, 1988, IMRA358518 U L PAST, P5
[7]  
Kuich W., 1986, SEMIRINGS AUTOMATA L
[8]   COMMUTATIVE ONE-COUNTER LANGUAGES ARE REGULAR [J].
LATTEUX, M ;
ROZENBERG, G .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1984, 29 (01) :54-57