EXACT FIRST-PASSAGE EXPONENTS OF 1D DOMAIN GROWTH - RELATION TO A REACTION-DIFFUSION MODEL

被引:229
作者
DERRIDA, B [1 ]
HAKIM, V [1 ]
PASQUIER, V [1 ]
机构
[1] CENS,SERV PHYS THEOR,F-91191 GIF SUR YVETTE,FRANCE
关键词
D O I
10.1103/PhysRevLett.75.751
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the zero temperature Glauber dynamics of the ferromagnetic Ising or q-state Potts model, the size of domains is known to grow like t(1/2). Recent simulations have shown that the fraction r(q, t) of spins, which have never flipped up to time t, decays like the power law r(q, t) similar to t(-theta(q)) with a nontrivial dependence of the exponent theta(q) on q and on space dimension. By mapping the problem on an exactly soluble one-species coagulation model (A + A --> A), we obtain the exact expression of theta(q) in dimension one.
引用
收藏
页码:751 / 754
页数:4
相关论文
共 35 条
[1]   REACTION-DIFFUSION PROCESSES, CRITICAL-DYNAMICS, AND QUANTUM CHAINS [J].
ALCARAZ, FC ;
DROZ, M ;
HENKEL, M ;
RITTENBERG, V .
ANNALS OF PHYSICS, 1994, 230 (02) :250-302
[2]  
[Anonymous], 2013, 2 DIMENSIONAL ISING
[3]  
[Anonymous], 1967, RANDOM MATRICES
[4]   STATICS AND DYNAMICS OF A DIFFUSION-LIMITED REACTION - ANOMALOUS KINETICS, NONEQUILIBRIUM SELF-ORDERING, AND A DYNAMIC TRANSITION [J].
BENAVRAHAM, D ;
BURSCHKA, MA ;
DOERING, CR .
JOURNAL OF STATISTICAL PHYSICS, 1990, 60 (5-6) :695-728
[5]  
BRAMSON M, 1980, Z ANN PROBAB, V8, P183
[6]  
BRAY A, 1994, ADV PHYS, V44, P357
[7]   UNIVERSAL SCALING FUNCTION FOR DOMAIN GROWTH IN THE GLAUBER-ISING CHAIN [J].
BRAY, AJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (02) :L67-L72
[8]   PROPORTION OF UNAFFECTED SITES IN A REACTION-DIFFUSION PROCESS [J].
CARDY, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (01) :L19-L24
[9]   COAGULATION WITH A STEADY POINT MONOMER SOURCE [J].
CHENG, Z ;
REDNER, S ;
LEYVRAZ, F .
PHYSICAL REVIEW LETTERS, 1989, 62 (19) :2321-2324
[10]   SOME PROPERTIES OF THE DIFFUSION-LIMITED REACTION NA+MB-]C WITH HOMOGENEOUS AND INHOMOGENEOUS INITIAL CONDITIONS [J].
CORNELL, S ;
DROZ, M ;
CHOPARD, B .
PHYSICA A, 1992, 188 (1-3) :322-336