CONSTRAINED CONTROLLABILITY OF LINEAR DISCRETE NONSTATIONARY SYSTEMS IN BANACH-SPACES

被引:3
|
作者
PHAT, VN [1 ]
DIEU, TC [1 ]
机构
[1] USSR ACAD SCI,CTR COMP,MOSCOW,USSR
关键词
LINEAR DISCRETE SYSTEMS; CONSTRAINED CONTROLLABILITY; SET-VALUED MAPPINGS; INFINITE-DIMENSIONAL SYSTEMS;
D O I
10.1137/0330069
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies local null-controllability of linear infinite-dimensional, nonstationary, discrete-time systems of the form x(k+1) = A(k)x(k) + B(k)u(k), u(k) is-an-element-of OMEGA subset-of U, x(k) is-an-element-of M(k) subset-of X, where X, U are Banach spaces; A(k), B(k) are linearbounded operators; M(k), OMEGA are given nonempty subsets. New necessary and sufficient conditions for local null-controllability are given. The main tool is the surjectivity theorem for convex multivalued mappings in Banach spaces.
引用
收藏
页码:1311 / 1318
页数:8
相关论文
共 50 条