QUANTUM GROUPS, Q-OSCILLATORS, AND COVARIANT ALGEBRAS

被引:8
作者
KULISH, PP
机构
关键词
D O I
10.1007/BF01019325
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The physical interpretation of the basic concepts of the theory of covariant groups - coproducts, representations and corepresentations, action and coaction - is discussed for the examples of the simplest q deformed objects (quantum groups and algebras, q oscillators, and comodule algebras). It is shown that the reduction of the covariant algebra of quantum second-rank tensors includes the algebras of the q oscillator and quantum sphere. A special case of covariant algebra corresponds to the braid group in a space with nontrivial topology.
引用
收藏
页码:137 / 141
页数:5
相关论文
共 50 条
[41]   SINGLE Q-OSCILLATOR MODE REALIZATION OF QUANTUM GROUP THROUGH CANONICAL BOSONIZATIONS OF SU(2)Q AND Q-OSCILLATORS [J].
MALLICK, BB ;
KUNDU, A .
MODERN PHYSICS LETTERS A, 1991, 6 (08) :701-705
[42]   Q-OSCILLATORS REALIZATION OF FQ(4) AND GQ(3) [J].
SCIARRINO, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (05) :L219-L226
[43]   Q-OSCILLATORS, NON-KAHLER MANIFOLDS AND CONSTRAINED DYNAMICS [J].
SHABANOV, SV .
MODERN PHYSICS LETTERS A, 1995, 10 (12) :941-948
[44]   q-Oscillators, Non-Kaehler Manifolds and Constrained Dynamics [J].
Shabanov, S. V. .
Modern Physics Letter A, 10 (12)
[45]   SU(d)-invariant multidimensional q-oscillators with bosonic degeneracy [J].
Algin, A ;
Arik, M ;
Atakishiyev, NM .
MODERN PHYSICS LETTERS A, 2000, 15 (19) :1237-1242
[46]   ON THE NUMBER OPERATORS OF MULTIMODE SYSTEMS OF DEFORMED OSCILLATORS COVARIANT UNDER QUANTUM GROUPS [J].
JAGANNATHAN, R ;
SRIDHAR, R ;
VASUDEVAN, R ;
CHATURVEDI, S ;
KRISHNAKUMARI, M ;
SHANTA, P ;
SRINIVASAN, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (23) :6429-6453
[48]   Coherent States of Two-Mode q-Oscillators with a q Root of Unity [J].
W.-S. Chung .
International Journal of Theoretical Physics, 2001, 40 :1737-1742
[49]   On the integrability of q-oscillators based on invariants of discrete Fourier transforms [J].
Ruffing, A .
5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, :55-56
[50]   Quantum group covariant algebras [J].
Kulish, PP .
QUANTUM GROUPS AND THEIR APPLICATIONS IN PHYSICS, 1996, 127 :203-214