Support vector machine classification with indefinite kernels

被引:39
作者
Luss, Ronny [1 ]
d'Aspremont, Alexandre [1 ]
机构
[1] Princeton Univ, ORFE Dept, Princeton, NJ 08544 USA
关键词
D O I
10.1007/s12532-009-0005-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a method for support vector machine classification using indefinite kernels. Instead of directly minimizing or stabilizing a nonconvex loss function, our algorithm simultaneously computes support vectors and a proxy kernel matrix used in forming the loss. This can be interpreted as a penalized kernel learning problem where indefinite kernel matrices are treated as noisy observations of a true Mercer kernel. Our formulation keeps the problem convex and relatively large problems can be solved efficiently using the projected gradient or analytic center cutting plane methods. We compare the performance of our technique with other methods on several standard data sets.
引用
收藏
页码:97 / 118
页数:22
相关论文
共 35 条
[1]  
[Anonymous], 2008, MOSEK OPTIMIZATION T
[2]  
[Anonymous], 2005, P 22 INT C MACH LEAR
[3]  
Asuncion A., 2007, SCH INFORM COMPUTER
[4]  
Bach F.R., 2004, P 21 INT C MACH LEAR
[5]  
Bennett K. P., 2000, ICML, P57
[6]  
Bertsekas D., 1999, NONLINEAR PROGRAMMIN
[7]  
Boyd S., 2004, CONVEX OPTIMIZATION, DOI DOI 10.1017/CBO9780511804441
[8]  
Chang C. C., LIBSVM LIB SUPPORT V
[9]  
Chen J, 2008, P 25 INT C MACH LEAR
[10]  
Chen Y., 2009, P 26 INT C MACH LEAR