THE TRIDIAGONAL APPROACH TO SZEGOS ORTHOGONAL POLYNOMIALS, TOEPLITZ LINEAR-SYSTEMS, AND RELATED INTERPOLATION PROBLEMS

被引:24
作者
DELSARTE, P
GENIN, Y
机构
关键词
D O I
10.1137/0519050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:718 / 735
页数:18
相关论文
共 50 条
[31]   PARALLEL MINIMAL NORM METHOD FOR TRIDIAGONAL LINEAR-SYSTEMS [J].
DEKKER, E ;
DEKKER, L .
IEEE TRANSACTIONS ON COMPUTERS, 1995, 44 (07) :942-946
[32]   ANALYSIS OF A PARALLEL SOLUTION METHOD FOR TRIDIAGONAL LINEAR-SYSTEMS [J].
VANDERVORST, HA .
PARALLEL COMPUTING, 1987, 5 (03) :303-311
[33]   A RECURSIVE DECOUPLING METHOD FOR SOLVING TRIDIAGONAL LINEAR-SYSTEMS [J].
EVANS, DJ .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1990, 33 (1-2) :95-102
[34]   MINIMUM POLYNOMIALS AND CONTROL IN LINEAR-SYSTEMS [J].
HEARON, JZ .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1977, 82 (02) :129-132
[35]   A PLAIN APPROACH FOR DEALING WITH FLEXIBILITY PROBLEMS IN LINEAR-SYSTEMS [J].
SHIMIZU, Y .
COMPUTERS & CHEMICAL ENGINEERING, 1989, 13 (10) :1189-1191
[36]   Convergence rate of GMRES on tridiagonal block Toeplitz linear systems [J].
Doostaki, R. .
LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (12) :2533-2544
[37]   A stable parallel algorithm for block tridiagonal toeplitz-block-toeplitz linear systems [J].
Kamra, Rabia ;
Rao, S. Chandra Sekhara .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 190 :1415-1440
[38]   THE RECURSIVE TRI-REDUCTION METHOD FOR TRIDIAGONAL LINEAR-SYSTEMS [J].
EVANS, DJ ;
LI, CJ .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1991, 39 (3-4) :239-247
[39]   A MULTILEVEL PARALLEL SOLVER FOR BLOCK TRIDIAGONAL AND BANDED LINEAR-SYSTEMS [J].
HAJJ, IN ;
SKELBOE, S .
PARALLEL COMPUTING, 1990, 15 (1-3) :21-45
[40]   THE PARALLEL RECURSIVE DECOUPLING ALGORITHM FOR SOLVING TRIDIAGONAL LINEAR-SYSTEMS [J].
SPALETTA, G ;
EVANS, DJ .
PARALLEL COMPUTING, 1993, 19 (05) :563-576