Elliptic Curve Diffie-Hellman Protocol Implementation Using Picoblaze

被引:0
作者
Senekane, Makhamisa [1 ]
Qhobosheane, Sehlabaka [2 ]
Taele, B. M. [3 ]
机构
[1] iThemba LABS, Dept Elect & Informat Technol, ZA-7129 Faure, South Africa
[2] Stellenbosch Univ, Dept Elect & Elect Engn, ZA-7602 Matieland, South Africa
[3] Natl Univ Lesotho, Dept Phys & Elect, Roma 180, Lesotho
来源
INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY | 2011年 / 11卷 / 06期
关键词
Diffie-Hellman; Elliptic Curve Cryptography; Field Programmable Gate Array; Galois Field; Picoblaze;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Compared to other public key cryptography counterparts like Diffie-Hellman (DH) and Rivest Shamir Adleman (RSA), Elliptic Curve Cryptography (ECC) is known to provide equivalent level of security with lower number of bits used. Reduced bit usage implies less power and logic area are required to implement this cryptographic scheme. This is particularly important in wireless networks, where a high level of security is required, but with low power consumption. This paper presents the implementation of Elliptic Curve Diffie-Hellman (ECDH) key exchange protocol over GF (2163). The implementation is targeted to Spartan 3AN Field Programmable Gate Array (FPGA) from Xilinx. The results show that ECDH scalar multiplication can be computed in 1.34 milliseconds, using 4725 of 5888 FPGA slices available in Spartan 3AN. These results confirm the utility of Picoblaze in Elliptic Curve Cryptography.
引用
收藏
页码:30 / 34
页数:5
相关论文
共 41 条
[1]  
Anoop M. S., 2007, TECHNICAL REPORT
[2]  
Backtir S., 2008, THESIS
[3]  
Barker E., 2007, NIST SPECIAL PUBLICA, P800
[4]  
BULENS P, 2006, SHARCS ECR WORKSH
[5]  
Chapman K., 2008, TECHNICAL REPORT
[6]  
Chu P.P., 2008, FPGA PROTOTYPING VHD, Vfirst
[7]  
Curry D., 2005, INT C ACC LARG EXPT
[8]  
De Win E, 1998, LECT NOTES COMPUT SC, V1528, P131
[9]   NEW DIRECTIONS IN CRYPTOGRAPHY [J].
DIFFIE, W ;
HELLMAN, ME .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (06) :644-654
[10]  
Eberle H., 2005, P 16 IEEE INT C APPL