GROUPS 2-TRANSITIVE ON A SET OF THEIR SYLOW SUBGROUPS

被引:1
作者
BREWSTER, B
WARD, MB
机构
[1] SUNY BINGHAMTON,DEPT MATH SCI,BINGHAMTON,NY 13901
[2] BUCKNELL UNIV,DEPT MATH,LEWISBURG,PA 17839
关键词
D O I
10.1017/S0004972700014507
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify, module the kernel of the action, finite groups G that act 2-transitively on Syl(r)(G) for some prime r dividing \G\. We furthermore prove that any finite group that acts 2-transitively on Syl(r)(G) for each prime r is solvable and of nilpotent length at most 3.
引用
收藏
页码:117 / 136
页数:20
相关论文
共 24 条
[1]  
Abhyankar S.S., Galois theory on the line in nonzero characteristic, Bull. Amer. Math. Soc., 27, pp. 68-133, (1992)
[2]  
Andre J., Projektive Ebenen über Fastkörpern, Math. Z., 62, pp. 137-160, (1955)
[3]  
Brewster B., Ward M., Group theory, pp. 322-325, (1992)
[4]  
Carter R.W., Finite groups of Lie type, (1972)
[5]  
Cameron P.J., Finite permutation groups and finite simple groups, Bull. London Math. Soc., 13, pp. 1-22, (1981)
[6]  
Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A., Atlas of finite groups, (1985)
[7]  
Curtis C.W., Kantor W.M., Seitz G.M., The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Soc., 218, pp. 1-59, (1976)
[8]  
Doerk K., Hawkes T., Finite soluble groups, (1992)
[9]  
Hering C., Transitive linear groups and linear groups which contain irreducible subgroups of prime order, Geom. Dedicata, 2, pp. 425-460, (1974)
[10]  
Hering C., Transitive linear groups and linear groups which contain irreducible subgroups of prime order, II, J. Algebra, 93, pp. 151-164, (1985)