A REPRESENTATION THEOREM FOR QUASI-METRIC SPACES

被引:12
作者
VITOLO, P [1 ]
机构
[1] UNIV BASILICATA,DIPARTIMENTO MATEMAT,I-85100 POTENZA,ITALY
关键词
QUASI-METRIC SPACE; QUASI-METRIZABLE SPACE; QUASI-METRIC; EXTENDED QUASI-METRIC; HYPERSPACE; HAUSDORFF QUASI-METRIC;
D O I
10.1016/0166-8641(95)00106-Q
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that every quasi-metric space is isomorphic to a subspace of the hyperspace of a suitable metric space, endowed with the Hausdorff quasi-metric. Therefore a topological space is quasi-metrizable if and only if it can be embedded in a Hausdorff quasi-metric hyperspace.
引用
收藏
页码:101 / 104
页数:4
相关论文
共 7 条
[1]   WEAK TOPOLOGIES FOR THE CLOSED SUBSETS OF A METRIZABLE SPACE [J].
BEER, G ;
LUCCHETTI, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 335 (02) :805-822
[2]  
Fletcher P., 1982, QUASI UNIFORM SPACES
[3]  
FOX R, UNPUB METRIZABILITY
[4]  
KLEIN E., 1984, THEORY CORRES
[5]   WHICH TOPOLOGIES ARE QUASIMETRIZABLE [J].
KOPPERMAN, RD .
TOPOLOGY AND ITS APPLICATIONS, 1993, 52 (02) :99-107
[6]  
SMYTH MB, 1988, LECT NOTES COMPUT SC, V298, P236
[7]  
[No title captured]