TIKHONOVS METHOD FOR ILL-POSED PROBLEMS

被引:58
|
作者
FRANKLIN, JN [1 ]
机构
[1] CALTECH,APPL MATH DEPT,PASADENA,CA 91109
关键词
D O I
10.2307/2005354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:889 / 907
页数:19
相关论文
共 50 条
  • [21] Advances in ill-posed problems
    Guo, Q.P.
    Wan, W.C.
    Xiang, P.B.
    Tong, S.K.
    Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/Journal of Wuhan University of Technology (Transportation Science and Engineering), 2001, 25 (01):
  • [22] Ill-posed problems in geomechanics
    Mirenkov V.E.
    Journal of Mining Science, 2011, 47 (3) : 283 - 289
  • [23] A GCV based method for nonlinear ill-posed problems
    Eldad Haber
    Douglas Oldenburg
    Computational Geosciences, 2000, 4 : 41 - 63
  • [24] The a posteriori Fourier method for solving ill-posed problems
    Fu, Chu-Li
    Zhang, Yuan-Xiang
    Cheng, Hao
    Ma, Yun-Jie
    INVERSE PROBLEMS, 2012, 28 (09)
  • [25] A numerical method for solving nonlinear ill-posed problems
    Ramm, AG
    Smirnova, AB
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1999, 20 (3-4) : 317 - 332
  • [26] A FINITE DIMENSIONAL METHOD FOR SOLVINGNONLINEAR ILL-POSED PROBLEMS
    Qi-nian Jin(Institute of Mathematics
    Journal of Computational Mathematics, 1999, (03) : 315 - 326
  • [27] An entropic Landweber method for linear ill-posed problems
    Burger, M.
    Resmerita, E.
    Benning, M.
    INVERSE PROBLEMS, 2020, 36 (01)
  • [28] On the method of Lavrentiev regularization for nonlinear ill-posed problems
    Tautenhahn, U
    INVERSE PROBLEMS, 2002, 18 (01) : 191 - 207
  • [29] THE GENERAL ARCANGELI METHOD FOR SOLVING ILL-POSED PROBLEMS
    HOU, ZY
    LI, HN
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 21 (03) : 197 - 206
  • [30] FINITE-ELEMENT METHOD FOR ILL-POSED PROBLEMS
    NATTERER, F
    RAIRO-ANALYSE NUMERIQUE-NUMERICAL ANALYSIS, 1977, 11 (03): : 271 - 278