OPERATOR METHOD IN THE PROBLEM OF QUANTUM ANHARMONIC-OSCILLATOR

被引:50
作者
FERANCHUK, ID
KOMAROV, LI
NICHIPOR, IV
ULYANENKOV, AP
机构
[1] Physics Department, Byelorussian State University
关键词
D O I
10.1006/aphy.1995.1025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of quantum anharmonic oscillator is considered as a test for a new nonperturbative method of the Schrodinger equation solution-the operator method (OM). It is shown that the OM zeroth-order approximation permits us to find such analytical interpolation for eigenfunctions and eigenvalues of the Hamiltonian which ensures high accuracy within the entire range of the anharmonicity constant changing and for any quantum numbers. The OM subsequent approximations converge quickly to the exact solutions of the Schrodinger equation. These results are justified for different types of anharmonicity (double-well potential, quasistationary states, etc.) and can be generalized for more complicated quantum-mechanical problems. (C) 1995 Academic Press, Inc.
引用
收藏
页码:370 / 440
页数:71
相关论文
共 87 条
[1]  
AN CZ, 1987, PHYS LETT A, V125, P123, DOI 10.1016/0375-9601(87)90135-6
[2]   THE OPERATOR METHOD IN THE DIRECT AND INVERSE PROBLEMS OF THE SPECTROSCOPY [J].
AN, CZ ;
FERANCHUK, ID .
MOLECULAR PHYSICS, 1988, 64 (04) :589-594
[3]   OPTIMAL CHOICE OF A PARAMETER FOR THE OPERATOR METHOD OF THE SOLUTION OF THE SCHRODINGER-EQUATION [J].
AN, CZ ;
FERANCHUK, ID ;
KOMAROV, LI ;
NAKHAMCHIK, LS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (09) :1583-1587
[4]  
Antosik P, 1973, THEORY DISTRIBUTIONS
[5]   CONVERGENT PERTURBATION EXPANSION FOR THE ANHARMONIC-OSCILLATOR [J].
AU, CK ;
ROGERS, GW ;
AHARONOV, Y .
PHYSICS LETTERS A, 1983, 95 (06) :287-292
[6]  
AUSTIN J, 1982, J PHYS A, V15, pL433
[7]  
Barnes A.J, 1977, VIBRATIONAL SPECTROS
[8]  
BARYSHEVSKY VG, 1976, NUCLEAR OPTICS POLAR
[9]   ANHARMONIC OSCILLATOR [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW, 1969, 184 (05) :1231-&