SUPEREXPONENTIAL STABILITY OF KAM TORI

被引:124
作者
MORBIDELLI, A
GIORGILLI, A
机构
[1] UNIV MILAN,DIPARTIMENTO MATEMAT,I-20133 MILAN,ITALY
[2] CNR,GRP NAZL FIS MATEMAT,I-20133 MILAN,ITALY
关键词
CLASSICAL PERTURBATION THEORY; HAMILTONIAN DYNAMICAL SYSTEMS; KAM THEORY; EXPONENTIAL STABILITY; ARNOLD STABILITY;
D O I
10.1007/BF02180145
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamics in the neighborhood of an invariant torus of a nearly integrable system. We provide an upper bound to the diffusion speed, which turns out to be of superexponentially small size exp[-exp(1/rho)], rho being the distance from the invariant torus. We also discuss the connection of this result with the existence of many invariant tori close to the considered one.
引用
收藏
页码:1607 / 1617
页数:11
相关论文
共 17 条
[1]  
Arnold V.I., 1976, METHODES MATH MECANI
[2]  
Arnold V.I., 1963, RUSS MATH SURV+, V18, P9, DOI [DOI 10.1070/RM1963V018N05ABEH004130, 10.1070/rm1963v018n05abeh004130.510, DOI 10.1070/RM1963V018N05ABEH004130.510]
[3]   STABILITY OF MOTIONS NEAR RESONANCES IN QUASI-INTEGRABLE HAMILTONIAN-SYSTEMS [J].
BENETTIN, G ;
GALLAVOTTI, G .
JOURNAL OF STATISTICAL PHYSICS, 1986, 44 (3-4) :293-338
[4]   A PROOF OF KOLMOGOROV THEOREM ON INVARIANT TORI USING CANONICAL-TRANSFORMATIONS DEFINED BY THE LIE METHOD [J].
BENETTIN, G ;
GALGANI, L ;
GIORGILLI, A ;
STRELCYN, JM .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1984, 79 (02) :201-223
[5]   A PROOF OF NEKHOROSHEV THEOREM FOR THE STABILITY TIMES IN NEARLY INTEGRABLE HAMILTONIAN-SYSTEMS [J].
BENETTIN, G ;
GALGANI, L ;
GIORGILLI, A .
CELESTIAL MECHANICS, 1985, 37 (01) :1-25
[6]  
CHIERCHIA L, 1994, ANN I H POINCARE-PHY, V60, P1
[7]  
GIORGILLI A, 1985, CELESTIAL MECH, V37, P95, DOI 10.1007/BF01230921
[8]  
GIORGILLI A, 1989, J DIFF EQS, V20
[9]  
Kolmogorov A.N., 1954, DOKL AKAD NAUK SSSR, V98, P527, DOI DOI 10.1007/BFB0021737
[10]  
Lichtenberg A. J., 1983, REGULAR STOCHASTIC M