REPRESENTATIONS OF BRAID-GROUPS AND THE QUANTUM YANG-BAXTER EQUATION

被引:24
作者
WENZL, H
机构
[1] University of California, San Diego, La Jolla, CA
关键词
D O I
10.2140/pjm.1990.145.153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are going to study the construction of new representations of braid groups and solutions of quantum Yang-Baxter (=QYBE) from existing ones via cabling. This can be applied for the construction of new link invariants from a given one for a wide class of invariants. For the example of the 2-variable generalization of the Jones polynomial, this yields for each Young diagram a 1-parameter family of representations of the braid groups and a 2-variable link invariant. Using the braid representations from the QYBE, one obtains a 1-variable link invariant for each irreducible representation of a classical Lie algebra. © 1990 by Pacific Journal of Mathematics.
引用
收藏
页码:153 / 180
页数:28
相关论文
共 28 条
[1]   EXACTLY SOLVABLE MODELS AND NEW LINK POLYNOMIALS .1. N-STATE VERTEX MODELS [J].
AKUTSU, Y ;
WADATI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (09) :3039-3051
[2]  
[Anonymous], QUANTIZED UNIVERSAL
[3]   BRAIDS, LINK POLYNOMIALS AND A NEW ALGEBRA [J].
BIRMAN, JS ;
WENZL, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 313 (01) :249-273
[4]  
BOURBAKI N, ALGEBRE, V1
[5]  
Burde G., 1985, KNOTS
[6]  
de Robinson G.B., 1961, REPRESENTATION THEOR
[7]  
Drinfeld V.G., 1986, P INT C MATH, V1, P789
[8]   A NEW POLYNOMIAL INVARIANT OF KNOTS AND LINKS [J].
FREYD, P ;
YETTER, D ;
HOSTE, J ;
LICKORISH, WBR ;
MILLETT, K ;
OCNEANU, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (02) :239-246
[9]  
GYOJA A, 1986, OSAKA J MATH, V23, P841
[10]  
Hoefsmit P.N., 1974, REPRESENTATIONS HECK