Photoluminescence and Optical Absorption of Pure Nanocrystalline TiO2 Anatase and Rutile at Room Temperature

被引:0
作者
Kernazhitsky, L. [1 ]
Shymanovska, V. [1 ]
Gavrilko, T. [1 ]
Naumov, V. [2 ]
Fedorenko, L. [2 ]
Kshnyakin, V. [3 ]
机构
[1] NAS Ukraine, Inst Phys, 46 Pr Nauky, UA-03650 Kiev, Ukraine
[2] NAS Ukraine, Inst Semicond VE Lashkareva, UA-03028 Kiev, Ukraine
[3] Sumy State Univ, UA-40007 Sumy, Ukraine
关键词
Titanium dioxide; Anatase; Rutile; Photoluminescence; Optical absorption;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The optical absorption and photoluminescence of nanocrystalline TiO2 samples of anatase and rutile were investigated at room temperature. Nanocrystalline TiO2 samples were synthesized in the form of pure anatase or rutile and studied by X-ray diffraction, X-ray fluorescence, Raman spectroscopy, optical absorption and photoluminescence (PL). PL was studied at room temperature when excited by intense UV (3.68 eV) by a nitrogen laser. For the first time for nanocrystalline TiO2 a features in the high-resolution PL spectra, including the exciton band and interband transitions were registered. It is concluded that the processes of absorption and emission of light near the edge of the forbidden zone occur with the participation of the same electronic transitions. PL bands, including the peaks at 2.71-2.81 eV in the anatase and rutile arise due to exciton recombination in the TiO2 lattice oxygen vacancies. The exciton peak at 2.91 eV is attributed to the recombination of self-trapped excitons in anatase or to the free exciton in rutile, respectively. PL bands within 3.0-3.3 eV attributed to indirect and direct allowed transitions due to electron-hole recombination. PL bands at 3.03 eV and 3.26 eV, attributed to the emission of free excitons near the fundamental absorption edge of rutile and anatase, respectively. The influence of TiO2 crystal structure and calcination temperature of the samples on the PL spectra and optical absorbtion is discussed.
引用
收藏
页数:8
相关论文
共 45 条
[1]   Photoluminescence of anatase and rutile TiO2 particles [J].
Abazovic, Nadica D. ;
Comor, Mirjana I. ;
Dramicanin, Miroslav D. ;
Jovanovic, Dragana J. ;
Ahrenkiel, S. Phillip ;
Nedeljkovic, Jovan M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (50) :25366-25370
[2]   OPTICAL-PROPERTIES OF RUTILE NEAR ITS FUNDAMENTAL-BAND GAP [J].
AMTOUT, A ;
LEONELLI, R .
PHYSICAL REVIEW B, 1995, 51 (11) :6842-6851
[3]   PHOTOINDUCED AND PHOTOCATALYTIC REACTIONS ON SUPPORTED METAL-OXIDE CATALYSTS - EXCITED-STATES OF OXIDES AND REACTION INTERMEDIATES [J].
ANPO, M ;
KUBOKAWA, Y .
REVIEWS OF CHEMICAL INTERMEDIATES, 1987, 8 (01) :105-124
[4]   PHOTOLUMINESCENCE AND PHOTOCATALYTIC ACTIVITY OF HIGHLY DISPERSED TITANIUM-OXIDE ANCHORED ONTO POROUS VYCOR GLASS [J].
ANPO, M ;
AIKAWA, N ;
KUBOKAWA, Y ;
CHE, M ;
LOUIS, C ;
GIAMELLO, E .
JOURNAL OF PHYSICAL CHEMISTRY, 1985, 89 (23) :5017-5021
[5]   Correlating Photoluminescence and Photocatalytic Activity of Mixed-phase Nanocrystalline Titania [J].
Baiju, K. V. ;
Zachariah, A. ;
Shukla, S. ;
Biju, S. ;
Reddy, M. L. P. ;
Warrier, K. G. K. .
CATALYSIS LETTERS, 2009, 130 (1-2) :130-136
[6]   IR-analysis of H-bonded H2O on the pure TiO2 surface [J].
Bezrodna, T ;
Puchkovska, G ;
Shymanovska, V ;
Baran, J ;
Ratajczak, H .
JOURNAL OF MOLECULAR STRUCTURE, 2004, 700 (1-3) :175-181
[7]   Pyridine-TiO2 surface interaction as a probe for surface active centers analysis [J].
Bezrodna, T ;
Puchkovska, G ;
Shimanovska, V ;
Chashechnikova, I ;
Khalyavka, T ;
Baran, J .
APPLIED SURFACE SCIENCE, 2003, 214 (1-4) :222-231
[8]  
Danzhen L., 2000, CHIN J MAT RES, V14, P639
[9]   ELECTRONIC BAND-STRUCTURE OF TITANIUM-DIOXIDE [J].
DAUDE, N ;
GOUT, C ;
JOUANIN, C .
PHYSICAL REVIEW B, 1977, 15 (06) :3229-3235
[10]   THE OBSERVATION OF EXCITON EMISSION FROM RUTILE SINGLE-CRYSTALS [J].
DEHAART, LGJ ;
BLASSE, G .
JOURNAL OF SOLID STATE CHEMISTRY, 1986, 61 (01) :135-136