INTRINSIC VOLUMES AND LATTICE POINTS OF CROSSPOLYTOPES

被引:28
作者
BETKE, U
HENK, M
机构
[1] Mathematisches Institut, Universität Siegen, Siegen, D-W-5 900
来源
MONATSHEFTE FUR MATHEMATIK | 1993年 / 115卷 / 1-2期
关键词
D O I
10.1007/BF01311208
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hadwiger showed by computing the intrinsic volumes of a regular simplex that a rectangular simplex is a counterexample to Wills' conjecture for the relation between the lattice point enumerator and the intrinsic volumes in dimensions not less than 441. Here we give formulae for the volumes of spherical polytopes related to the intrinsic volumes of the regular crosspolytope and of the rectangular simplex. This completes the determination of intrinsic volumes for regular polytopes. As a consequence we prove that Wills' conjecture is false even for centrally symmetric convex bodies in dimensions not less than 207.
引用
收藏
页码:27 / 33
页数:7
相关论文
共 14 条
[1]  
BETKE U, 1979, CONTRIBUTIONS GEOMET, P226
[2]  
BOHME J, 1980, POLYEDERGEOMETRIE N
[3]   INEQUALITY BETWEEN VOLUME, SURFACE AND LATTICE POINT NUMBER OF CONVEX BODIES IN N-DIMENSIONAL EUCLIDEAN SPACE [J].
BOKOWSKI, J ;
WILLS, JM ;
HADWIGER, H .
MATHEMATISCHE ZEITSCHRIFT, 1972, 127 (04) :363-&
[4]  
Bonnesen T., 1934, THEORIE KONVEXEN KOR
[5]  
GRUBER PM, 1987, GEOMETRY NUMBERS AMS
[6]   LATTICE POINT NUMBER IN SIMPLICES AND WILL CONJECTURE [J].
HADWIGER, H .
MATHEMATISCHE ANNALEN, 1979, 239 (03) :271-288
[7]   NONLINEAR ANGLE-SUM RELATIONS FOR POLYHEDRAL CONES AND POLYTOPES [J].
MCMULLEN, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 78 (SEP) :247-261
[8]  
McMullen P., 1971, CONVEX POLYTOPES UPP
[9]  
Nosarzewska M., 1948, C MATH, V1, P305, DOI 10.4064/cm-1-4-305-311
[10]   LATTICE POINT NUMBER OF CONVEX BODIES IN 3-DIMENSIONAL EUCLIDEAN SPACE [J].
OVERHAGEN, T .
MATHEMATISCHE ANNALEN, 1975, 216 (03) :217-224