A TRIANGULAR THICK PLATE FINITE-ELEMENT WITH AN EXACT THIN LIMIT

被引:45
作者
AURICCHIO, F
TAYLOR, RL
机构
[1] Department of Civil Engineering, University of California at Berkeley, Berkeley
关键词
D O I
10.1016/0168-874X(94)00057-M
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new formulation for a triangular finite element developed within the framework of a shear deformable plate theory. The element takes advantage of internal rotational degrees of freedom and a linked interpolation between the transverse displacement and the rotations. The element has excellent interpolating capacity and presents no locking effects; in fact, the shear energy may be set identically equal to zero without introducing any ill-conditioning, thus recovering a proper thin plate limit.
引用
收藏
页码:57 / 68
页数:12
相关论文
共 12 条
[1]   A SHEAR-DEFORMABLE PLATE ELEMENT WITH AN EXACT THIN LIMIT [J].
AURICCHIO, F ;
TAYLOR, RL .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 118 (3-4) :393-412
[2]  
AURICCHIO F, 1991, UCBSEMM9104 U CAL BE
[3]   BENCHMARK COMPUTATION AND PERFORMANCE EVALUATION FOR A RHOMBIC PLATE BENDING PROBLEM [J].
BABUSKA, I ;
SCAPOLLA, T .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1989, 28 (01) :155-179
[4]  
CRISFIELD MA, 1986, FINITE ELEMENTS SOLU, V1
[5]  
Hughes T. J. R., 1987, FINITE ELEMENT METHO
[6]  
MINDLIN RD, 1951, J APPL MECH-T ASME, V18, P31
[7]  
REISSNER E, 1945, J APPL MECH-T ASME, V12, pA69
[8]  
TAYLOR RL, 1987, MAFELAP 1987 MATH FI
[9]   ON A HIERARCHY OF CONFORMING TIMOSHENKO BEAM ELEMENTS [J].
TESSLER, A ;
DONG, SB .
COMPUTERS & STRUCTURES, 1981, 14 (3-4) :335-344
[10]  
Zienkiewicz O.C., 1991, FINITE ELEMENT METHO, V2