CARLEMAN ESTIMATES FOR A SUBELLIPTIC OPERATOR AND UNIQUE CONTINUATION

被引:21
|
作者
GAROFALO, N [1 ]
SHEN, Z [1 ]
机构
[1] PURDUE UNIV,DEPT MATH,W LAFAYETTE,IN 47907
关键词
UNIQUE CONTINUATION; SUBELLIPTIC OPERATOR; CARLEMAN ESTIMATES;
D O I
10.5802/aif.1392
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a Carleman type inequality for the subelliptic operator L = DELTA(z) + Absolute value of x 2partial derivative(t)2 in R(n+1), n greater-than-or-equal-to 2, where z is-an-element-of R(n), t is-an-element-of R. As a consequence, we show that -L + V has the strong unique continuation property at points of the degeneracy manifold {(0, t) is-an-element-of R(n+1)\t is-an-element-of R} if the potential V is locally in certain L(p) spaces.
引用
收藏
页码:129 / 166
页数:38
相关论文
共 50 条
  • [41] Scale-Free Unique Continuation Estimates and Applications to Random Schrödinger Operators
    Constanza Rojas-Molina
    Ivan Veselić
    Communications in Mathematical Physics, 2013, 320 : 245 - 274
  • [42] A remark on unique continuation
    Yifei Pan
    Thomas Wolff
    The Journal of Geometric Analysis, 1998, 8 (4): : 599 - 604
  • [43] UNIQUE CONTINUATION FOR THE SCHRODINGER EQUATION WITH GRADIENT TERM
    Koh, Youngwoo
    Seo, Ihyeok
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (06) : 2555 - 2562
  • [44] Unique continuation from infinity for linear waves
    Alexakis, Spyros
    Schlue, Volker
    Shao, Arick
    ADVANCES IN MATHEMATICS, 2016, 286 : 481 - 544
  • [45] Carleman estimates and inverse problems for Dirac operators
    Mikko Salo
    Leo Tzou
    Mathematische Annalen, 2009, 344 : 161 - 184
  • [46] Carleman estimates and inverse problems for Dirac operators
    Salo, Mikko
    Tzou, Leo
    MATHEMATISCHE ANNALEN, 2009, 344 (01) : 161 - 184
  • [47] A degenerate population system: Carleman estimates and controllability
    Boutaayamou, Idriss
    Fragnelli, Genni
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
  • [48] Carleman estimates for a class of degenerate parabolic operators
    Cannarsa, P.
    Martinez, P.
    Vancostenoble, J.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (01) : 1 - 19
  • [49] Carleman estimates and boundedness of associated multiplier operators
    Jeong, Eunhee
    Kwon, Yehyun
    Lee, Sanghyuk
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (04) : 774 - 796
  • [50] Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by boundary data. Part I: Carleman estimates
    Li, Shumin
    Shang, Yunxia
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2022, 30 (05): : 621 - 658