A COUNTABLE X HAVING A CLOSED SUBSPACE A WITH C-P(A) NOT A FACTOR OF C-P(X)

被引:4
|
作者
MARCISZEWSKI, W
机构
[1] UNIV WARSAW,INST MATH,PL-02097 WARSAW,POLAND
[2] POLISH ACAD SCI,INST MATH,WARSAW,POLAND
关键词
FUNCTION SPACE; POINTWISE CONVERGENCE TOPOLOGY; C-P(X); EXTENDER;
D O I
10.1016/0166-8641(94)00089-L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a countable space such that the function space C-p(A) is analytic, We prove that there exists a countable space X such that X contains A as a closed subset and the function space C-p(X) is an absolute F-sigma delta-set, Therefore, if C-p(A) is analytic non-Borel then C-p(A) is not a factor of C-p(X) and there is no continuous (or even Borel-measurable) extender e: C-p(A) -->, C-p(X) (i.e., a map such that e(f)\A = f, for f is an element of C-p(A)). This answers a question of Arkhangel'skii. We also construct a countable space X such that the function space C-p(X) is an absolute F-sigma delta-set and X contains closed subsets A with C-p(A) of arbitrarily high Borel complexity (or even analytic non-Borel).
引用
收藏
页码:141 / 147
页数:7
相关论文
共 50 条
  • [1] Nonnormal spaces C-p(X) with countable extent
    Just, W
    Sipacheva, OV
    Szeptycki, PJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (04) : 1227 - 1235
  • [2] On dense subspaces of C-p(X)
    Sakai, Masami
    NOTE DI MATEMATICA, 2007, 27 : 41 - 46
  • [3] Sequential range of C-p(X)
    Rodriguez, Armando
    CIENCIA E INGENIERIA, 2018, 39 (01): : 97 - 106
  • [4] Galois module structure of the integers in wildly ramified C-p x C-p extensions
    Elder, GG
    Madan, ML
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (04): : 722 - 735
  • [5] WHAT IF C-P(X) IS PERFECTLY NORMAL
    TKACHUK, VV
    TOPOLOGY AND ITS APPLICATIONS, 1995, 65 (01) : 57 - 67
  • [6] THE DUAL OF THE LOCALLY CONVEX SPACE C-p (X)
    Ferrando, J. C.
    Kakol, Jerzy
    Saxon, Stephen A.
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2014, 50 (02) : 389 - 399
  • [7] How sensitive is C-p(X, Y) to changes in X and/or Y?
    Buzyakova, Raushan Z.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2008, 49 (04): : 657 - 665
  • [8] The Cech number of C-p(X) when X is an ordinal space
    Alas, Ofelia T.
    Tamariz-Mascarua, Angel
    APPLIED GENERAL TOPOLOGY, 2008, 9 (01): : 67 - 76
  • [9] On linear continuous open surjections of the spaces C-p(X)
    Leiderman, A
    Levin, M
    Pestov, V
    TOPOLOGY AND ITS APPLICATIONS, 1997, 81 (03) : 269 - 279