RIGOROUS RENORMALIZATION-GROUP AND DISORDERED-SYSTEMS

被引:3
|
作者
BRICMONT, J [1 ]
KUPIAINEN, A [1 ]
机构
[1] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08540
来源
PHYSICA A | 1990年 / 163卷 / 01期
关键词
D O I
10.1016/0378-4371(90)90312-G
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider random walks in a non-symmetric random environment. We report a recent result, based on a Renormalisation Group approach, showing that for d#62;2, these walks are diffusive when the disorder is weak. © 1990.
引用
收藏
页码:31 / 37
页数:7
相关论文
共 50 条
  • [41] MICROCANONICAL RENORMALIZATION-GROUP
    CREUTZ, M
    GOCKSCH, A
    OGILVIE, M
    OKAWA, M
    PHYSICAL REVIEW LETTERS, 1984, 53 (09) : 875 - 877
  • [42] RENORMALIZATION-GROUP FOR AGGREGATION
    KOLB, M
    JOURNAL OF STATISTICAL PHYSICS, 1985, 39 (1-2) : 252 - 252
  • [43] Rigorous renormalization group
    Antti Kupiainen
    Nature Physics, 2023, 19 : 1539 - 1541
  • [44] RENORMALIZATION-GROUP AND COCYCLES
    HIRAYAMA, M
    PHYSICS LETTERS B, 1987, 194 (01) : 97 - 102
  • [45] OPERATOR RENORMALIZATION-GROUP
    HORN, D
    LANGEVELD, WGJ
    QUINN, HR
    WEINSTEIN, M
    PHYSICAL REVIEW D, 1988, 38 (10): : 3238 - 3247
  • [46] ANALYTICITY AND RENORMALIZATION-GROUP
    KRASNIKOV, NV
    NUCLEAR PHYSICS B, 1981, 192 (02) : 497 - 508
  • [47] RENORMALIZATION-GROUP AND UNIVERSALITY
    LIAO, SB
    POLONYI, J
    PHYSICAL REVIEW D, 1995, 51 (08): : 4474 - 4493
  • [48] REAL-SPACE RENORMALIZATION-GROUP FOR DIRECTED SYSTEMS
    ZHANG, ZQ
    YANG, YS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (06): : 1267 - 1276
  • [49] Nonperturbative renormalization-group approach for quantum dissipative systems
    Aoki, KI
    Horikoshi, A
    PHYSICAL REVIEW A, 2002, 66 (04): : 9
  • [50] GENERALIZED RENORMALIZATION-GROUP EQUATION FOR SYSTEMS OF ARBITRARY SYMMETRY
    LISYANSKY, AA
    NICOLAIDES, D
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1994, 33 (12) : 2399 - 2406