The Transmuted Weibull Lomax Distribution: Properties and Application

被引:40
作者
Afify, Ahmed Z. [1 ]
Nofal, Zohdy M. [1 ]
Yousof, Haitham M. [1 ]
El Gebaly, Yehia M. [1 ]
Butt, Nadeem Shafique [2 ]
机构
[1] Benha Univ, Dept Stat Math & Insurance, Banha, Egypt
[2] Rabigh King Abdul Aziz Univ, Dept Family & Community Med, Jeddah, Saudi Arabia
关键词
Weibull Lomax; Probability Weighted Moments; Entropy; Order Statistics; Maximum Likelihood;
D O I
10.18187/pjsor.v11i1.956
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new five parameter model is proposed and stutied. The new distribution generalizes the Weibull Lomax distribution introduced by Tahir et al. (2015) and is referred to as transmuted Weibull Lomax (TWL) distribution. Various structural properties of the new model including ordinary and incomplete moments, quantiles, generating function, probability weighted moments, Renyi and q-entropies and order statistics are derived. We proposed the method of maximum likelihood for estimating the model parameters. The usefulness of the new model is illustrated through an application to a real data set.
引用
收藏
页码:135 / 152
页数:18
相关论文
共 16 条
[1]  
Abdul-Moniem I.B., 2012, INT J MATH ARCH, V3, P2144
[2]  
Afify AZ, 2014, PAK J STAT OPER RES, V10
[3]  
ARNOLD B. C., 1983, PARETO DISTRIBUTIONS
[4]  
Ashour S.K., 2013, AM J APPL MATH STAT, V1, P121, DOI [10.12691/ajams-1-6-3, DOI 10.12691/AJAMS-1-6-3, DOI 10.12691/ajams-1-6-3]
[5]  
Balkema A.A., 1974, ANN PROBAB, V2, P972
[6]   On some lifetime distributions with decreasing failure rate [J].
Chahkandi, M. ;
Ganjali, M. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) :4433-4440
[7]   A GENERAL-PURPOSE APPROXIMATE GOODNESS-OF-FIT TEST [J].
CHEN, GM ;
BALAKRISHNAN, N .
JOURNAL OF QUALITY TECHNOLOGY, 1995, 27 (02) :154-161
[8]  
Cordeiro GM, 2013, J STAT COMPUT SIM, DOI [10.1080/00949655.822869, DOI 10.1080/00949655.822869]
[9]   Marshall-Olkin extended Lomax distribution and its application to censored data [J].
Ghitany, M. E. ;
Al-Awadhi, F. A. ;
Alkhalfan, L. A. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (9-12) :1855-1866
[10]  
Johnson N. L., 1994, CONTINEOUS UNIVARIAT, V1