Eigenvalues of the p(x)-biharmonic operator with indefinite weight under Neumann boundary conditions

被引:11
|
作者
Taarabti, S. [1 ]
El Allali, Z. [1 ]
Ben Haddouch, K. [1 ]
机构
[1] Univ Mohammed Premier, Fac Multidisciplinary Nador, Dept Math & Comp, Lab Appl Math & Informat Syst, Oujda, Morocco
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2018年 / 36卷 / 01期
关键词
Fourth order elliptic equation; variable exponent; Neumann boundary conditions; Ekeland variational principle;
D O I
10.5269/bspm.v36i1.31363
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we will study the existence of solutions for the mhomogeneo US elliptic equation with variable exponent, Delta(2)(p(x))u = lambda V (x) vertical bar u vertical bar(q(x)-2)u, in a smooth bounded domain, under Neumann boundary conditions, where A is a positive real number, p,q : (Omega) over bar -> R, are continuous functions, and V is an indefinite weight function. Considering different situations concerning the growth rates involved in the above quoted problem, we will prove the existence of a continuous family of eigenvalues.
引用
收藏
页码:195 / 213
页数:19
相关论文
共 50 条
  • [41] Existence of solutions for a fourth order eigenvalue problem with variable exponent under Neumann boundary conditions
    Ben Haddouch, K.
    El Allali, Z.
    Tsouli, N.
    El Habib, S.
    Kissi, F.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2016, 34 (01): : 253 - 272
  • [42] Multiplicity of nontrivial solutions for p$$ p $$-Kirchhoff type equation with Neumann boundary conditions
    Wang, Weihua
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (01) : 110 - 119
  • [43] Solutions for a p(x)-Kirchhoff type equation with Neumann boundary data
    Dai, Guowei
    Ma, Ruyun
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) : 2666 - 2680
  • [44] On a class of fractional p(x, y)-Kirchhoff type problems with indefinite weight
    Sajjadi, Seyed Mostafa
    Afrouzi, Ghasem Alizadeh
    CUBO-A MATHEMATICAL JOURNAL, 2024, 26 (01): : 107 - 122
  • [45] Eigenvalue Problems for Fractional p(x, y)-Laplacian Equations with Indefinite Weight
    Nguyen Thanh Chung
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (05): : 1153 - 1173
  • [46] EXISTENCE OF TWO WEAK SOLUTIONS FOR SOME ELLIPTIC PROBLEMS INVOLVING p(x)-BIHARMONIC OPERATOR
    Khodabakhshi, M. E. H. D., I
    Vaezpour, Seyyed Mansour
    Hadjian, A. R. M. I. N.
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (02) : 829 - 839
  • [47] Existence results of nontrivial solutions for a new p(x)-biharmonic problem with weight function
    Guo, Wei
    Yang, Jinfu
    Zhang, Jiafeng
    AIMS MATHEMATICS, 2022, 7 (05): : 8491 - 8509
  • [48] Renormalized solutions for p(x)-Laplacian equation with Neumann nonhomogeneous boundary condition
    M. B. Benboubker
    E. Nassouri
    S. Ouaro
    U. Traoré
    Advances in Operator Theory, 2020, 5 : 1480 - 1497
  • [49] Renormalized solutions for p(x)-Laplacian equation with Neumann nonhomogeneous boundary condition
    Benboubker, M. B.
    Nassouri, E.
    Ouaro, S.
    Traore, U.
    ADVANCES IN OPERATOR THEORY, 2020, 5 (04) : 1480 - 1497
  • [50] Existence results of infinitely many solutions for p(x)-Kirchhoff type triharmonic operator with Navier boundary conditions
    Rahal, Belgacem
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 478 (02) : 1133 - 1146