Eigenvalues of the p(x)-biharmonic operator with indefinite weight under Neumann boundary conditions

被引:11
|
作者
Taarabti, S. [1 ]
El Allali, Z. [1 ]
Ben Haddouch, K. [1 ]
机构
[1] Univ Mohammed Premier, Fac Multidisciplinary Nador, Dept Math & Comp, Lab Appl Math & Informat Syst, Oujda, Morocco
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2018年 / 36卷 / 01期
关键词
Fourth order elliptic equation; variable exponent; Neumann boundary conditions; Ekeland variational principle;
D O I
10.5269/bspm.v36i1.31363
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we will study the existence of solutions for the mhomogeneo US elliptic equation with variable exponent, Delta(2)(p(x))u = lambda V (x) vertical bar u vertical bar(q(x)-2)u, in a smooth bounded domain, under Neumann boundary conditions, where A is a positive real number, p,q : (Omega) over bar -> R, are continuous functions, and V is an indefinite weight function. Considering different situations concerning the growth rates involved in the above quoted problem, we will prove the existence of a continuous family of eigenvalues.
引用
收藏
页码:195 / 213
页数:19
相关论文
共 50 条
  • [31] Analysis and discretization of the volume penalized Laplace operator with Neumann boundary conditions
    Kolomenskiy, Dmitry
    van Yen, Romain Nguyen
    Schneider, Kai
    APPLIED NUMERICAL MATHEMATICS, 2015, 95 : 238 - 249
  • [32] On a new p(x)-Kirchhoff type problems with p(x)-Laplacian-like operators and Neumann boundary conditions
    El Ouaarabi, Mohamed
    Allalou, Chakir
    Melliani, Said
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2023, 15 (01) : 91 - 108
  • [33] On an Elliptic System of p(x)-Kirchhoff-Type under Neumann Boundary Condition
    Yucedag, Zehra
    Avci, Mustafa
    Mashiyev, Rabil
    MATHEMATICAL MODELLING AND ANALYSIS, 2012, 17 (02) : 161 - 170
  • [34] Infinitely many small solutions for the p(x)-Laplacian operator with nonlinear boundary conditions
    Liang, Sihua
    Zhang, Jihui
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (01) : 1 - 16
  • [35] Multiple solutions for nonlocal elliptic problems driven by p(x)-biharmonic operator
    Liao, Fang-Fang
    Heidarkhani, Shapour
    Moradi, Shahin
    AIMS MATHEMATICS, 2021, 6 (04): : 4156 - 4172
  • [36] ON THE p(x)-KIRCHHOFF-TYPE EQUATION INVOLVING THE p(x)-BIHARMONIC OPERATOR VIA THE GENUS THEORY
    Taarabti, S.
    El Allali, Z.
    Haddouch, K. Ben
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (06) : 978 - 989
  • [37] Existence and Multiplicity of Solutions for Choquard Type Problem Involving p(x)-Biharmonic Operator
    Zhang, Jing
    Hai, Quan
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (06)
  • [38] A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
    Andreu, F.
    Mazon, J. M.
    Rossi, J. D.
    Toledo, J.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (02): : 201 - 227
  • [39] Critical points approaches to a nonlocal elliptic problem driven by p(x)-biharmonic operator
    Heidarkhani, Shapour
    Moradi, Shahin
    Avci, Mustafa
    GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (01) : 55 - 69
  • [40] Renormalized solutions for a p(x)-Laplacian equation with Neumann nonhomogeneous boundary conditions and L-1-data
    Azroul, Elhoussine
    Barbara, Abdelkrim
    Benboubker, Mohamed Badr
    Ouaro, Stanislas
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2013, 40 (01): : 9 - 22