Eigenvalues of the p(x)-biharmonic operator with indefinite weight under Neumann boundary conditions

被引:11
|
作者
Taarabti, S. [1 ]
El Allali, Z. [1 ]
Ben Haddouch, K. [1 ]
机构
[1] Univ Mohammed Premier, Fac Multidisciplinary Nador, Dept Math & Comp, Lab Appl Math & Informat Syst, Oujda, Morocco
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2018年 / 36卷 / 01期
关键词
Fourth order elliptic equation; variable exponent; Neumann boundary conditions; Ekeland variational principle;
D O I
10.5269/bspm.v36i1.31363
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we will study the existence of solutions for the mhomogeneo US elliptic equation with variable exponent, Delta(2)(p(x))u = lambda V (x) vertical bar u vertical bar(q(x)-2)u, in a smooth bounded domain, under Neumann boundary conditions, where A is a positive real number, p,q : (Omega) over bar -> R, are continuous functions, and V is an indefinite weight function. Considering different situations concerning the growth rates involved in the above quoted problem, we will prove the existence of a continuous family of eigenvalues.
引用
收藏
页码:195 / 213
页数:19
相关论文
共 50 条