ON THE CLASSIFICATION OF DIAGONAL COSET MODULAR INVARIANTS

被引:17
作者
GANNON, T [1 ]
WALTON, MA [1 ]
机构
[1] UNIV LETHBRIDGE,DEPT PHYS,LETHBRIDGE,AB T1K 3M4,CANADA
关键词
D O I
10.1007/BF02100186
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We relate in a novel way the modular matrices of GKO diagonal cosets without fixed points to those of WZNW tensor products. Using this we classify all modular invariant partition functions of su(3)(k) + su(3)(1)/su(3)(k+1) for all positive integer level k, and su(2)(k) + su(2)(1)/su(2)(k+1) for all k and infinitely many l- (in fact, for each k a positive density of l). Of all these classifications, only that for su(2)(k) + su(2)(1)/su(2)(k+1) had been known. Our lists include many new invariants.
引用
收藏
页码:175 / 197
页数:23
相关论文
共 28 条
[11]   THE LOW-LEVEL MODULAR-INVARIANT PARTITION-FUNCTIONS OF RANK-2 ALGEBRAS [J].
GANNON, T ;
HOKIM, Q .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (15) :2667-2686
[12]  
GANNON T, IHES HEPTH9404185 PR
[13]  
GODDARD P, 1985, PHYS LETT B, V152, P88, DOI 10.1016/0370-2693(85)91145-1
[14]   UNITARY REPRESENTATIONS OF THE VIRASORO AND SUPER-VIRASORO ALGEBRAS [J].
GODDARD, P ;
KENT, A ;
OLIVE, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (01) :105-119
[15]   BONUS SYMMETRY IN CONFORMAL FIELD-THEORY [J].
INTRILIGATOR, K .
NUCLEAR PHYSICS B, 1990, 332 (03) :541-565
[16]  
Kac V. G., 1990, INFINITE DIMENSIONAL
[17]  
KAC VG, 1984, ADV MATH, V53, P125
[18]   MODULAR AND CONFORMAL-INVARIANCE CONSTRAINTS IN REPRESENTATION-THEORY OF AFFINE ALGEBRAS [J].
KAC, VG ;
WAKIMOTO, M .
ADVANCES IN MATHEMATICS, 1988, 70 (02) :156-236
[19]   SIMPLE FACTORS IN THE JACOBIAN OF A FERMAT CURVE [J].
KOBLITZ, N ;
ROHRLICH, D .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1978, 30 (06) :1183-1205
[20]   CONGRUENCE NUMBER, A GENERALIZATION OF SU(3) TRIALITY [J].
LEMIRE, F ;
PATERA, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (08) :2026-2027