STABILITY AND ASYMPTOTIC-BEHAVIOR OF A NUMERICAL-SOLUTION CORRESPONDING TO A DIFFUSION-REACTION EQUATION SOLVED BY A FINITE-DIFFERENCE SCHEME (CRANK-NICOLSON)

被引:14
作者
CHERRUAULT, Y [1 ]
CHOUBANE, M [1 ]
VALLETON, JM [1 ]
VINCENT, JC [1 ]
机构
[1] UNIV ROUEN HAUTE NORMANDIE,CHIM MACROMOLEC LAB,CNRS,UA 500,F-76134 MT ST AIGNAN,FRANCE
关键词
D O I
10.1016/0898-1221(90)90217-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper some partial differential equations arising in biochemistry are studied from the numerical point of view. These nonlinear equations (based on diffusion-reaction processes) are solved by using a Crank-Nicolson technique and convergence is proved by using lower and upper solutions. Stability and asymptotic behavior are also examined. A numerical algorithm has been deduced and is presently used by chemists. © 1990.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 11 条
[1]  
Adomian G., 1989, NONLINEAR STOCHASTIC, DOI DOI 10.1007/978-94-009-2569-4
[2]   CONVERGENCE OF ADOMIAN METHOD [J].
CHERRUAULT, Y .
KYBERNETES, 1989, 18 (02) :31-38
[3]  
Cherruault Y., 1986, MATH MODELLING BIOME
[4]   FINITE-DIFFERENCE APPROXIMATIONS TO THE DIRICHLET PROBLEM FOR ELLIPTIC-SYSTEMS [J].
HUY, CU ;
MCKENNA, PJ ;
WALTER, W .
NUMERISCHE MATHEMATIK, 1986, 49 (2-3) :227-237
[5]  
Kernevez J.-P., 1980, ENZYME MATH
[6]  
NOYE J, 1984, COMPUTATIONAL TECHNI
[7]  
Richtmyer RD., 1967, DIFFERENCE METHODS I
[8]  
Roache P.J., 1976, COMPUTATIONAL FLUID
[9]  
Smith G. D., 1978, NUMERICAL SOLUTION P, V2nd
[10]  
Varga RS, 1962, ITERATIVE ANAL