THE NONEXISTENCE OF EXPANSIVE HOMEOMORPHISMS OF PEANO CONTINUA IN THE PLANE

被引:29
作者
KATO, H [1 ]
机构
[1] HIROSHIMA UNIV,FAC INTEGRATED ARTS & SCI,HIROSHIMA 730,JAPAN
关键词
D O I
10.1016/0166-8641(90)90078-G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that if X is one of an arc, a circle or a disk, X does not admit an expansive homeomorphism. In this paper, we prove that there is no expansive homeomorphism on any (nondegenerate) Peano continuum in the plane. © 1990.
引用
收藏
页码:161 / 165
页数:5
相关论文
共 11 条
[1]  
BARGE M, 1989, COMMUNICATION
[2]  
Borsuk K, 1967, MONOGRAFIE MATEMATYC, V44
[3]  
BRYANT BF, 1954, THESIS VANDERBILT U
[4]  
KATO H, IN PRESS P AM MATH S
[5]  
KATO H, NONEXISTENCE EXPANSI
[6]  
Kawamura K., 1988, TSUKUBA J MATH, V12, P521
[7]  
Kuratowski K., 1968, TOPOLOGY, VII
[9]   EACH COMPACT ORIENTABLE SURFACE OF POSITIVE GENUS ADMITS AN EXPANSIVE HOMEOMORPHISM [J].
OBRIEN, T ;
REDDY, W .
PACIFIC JOURNAL OF MATHEMATICS, 1970, 35 (03) :737-+
[10]  
Utz, 1960, PAC J MATH, V10, P1319