THE FENCHEL-MOREAU THEOREM FOR SET-FUNCTIONS

被引:17
作者
LAI, HC
LIN, LJ
机构
[1] NATL TAIWAN COLL EDUC,DEPT MATH,CHANGHUA,TAIWAN
[2] NATL TSING HUA UNIV,INST MATH,HSINCHU 300,TAIWAN
关键词
D O I
10.2307/2047532
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:85 / 90
页数:6
相关论文
共 13 条
[1]  
AUBIN JP, 1979, MATH METHOD GAME EC
[2]   2ND ORDER OPTIMALITY CONDITIONS FOR MATHEMATICAL-PROGRAMMING WITH SET-FUNCTIONS [J].
CHOU, JH ;
HSIA, WS ;
LEE, TY .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1985, 26 (JAN) :284-292
[3]   ON MULTIPLE OBJECTIVE PROGRAMMING-PROBLEMS WITH SET-FUNCTIONS [J].
CHOU, JH ;
HSIA, WS ;
LEE, TY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1985, 105 (02) :383-394
[4]   A GENERALIZATION OF THE FENCHEL-MOREAU THEOREM [J].
KOSHI, S ;
KOMURO, N .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1983, 59 (05) :178-181
[5]  
KOSHI S, 1985, HOKKAIDO MATH J, V14, P75
[6]   SADDLE-POINT AND DUALITY IN THE OPTIMIZATION THEORY OF CONVEX SET-FUNCTIONS [J].
LAI, HC ;
YANG, SS .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1982, 24 (OCT) :130-137
[7]   DUALITY IN MATHEMATICAL-PROGRAMMING OF SET-FUNCTIONS - ON FENCHEL DUALITY THEOREM [J].
LAI, HC ;
YANG, SS ;
HWANG, GR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 95 (01) :223-234
[8]  
LAI HC, 1983, SOOCHOW J MATH, V9, P127
[9]  
Luenberger David G., 1997, OPTIMIZATION VECTOR
[10]   OPTIMAL CONSTRAINED SELECTION OF A MEASURABLE SUBSET [J].
MORRIS, RJT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 70 (02) :546-562