On particle filters applied to electricity load forecasting

被引:0
作者
Launay, Tristan [1 ,2 ]
Philippe, Anne [1 ]
Lamarche, Sophie [2 ]
机构
[1] Lab Math Jean Leray, 2 Rue Houssiniere BP 92208, F-44322 Nantes 3, France
[2] Elect France R&D, F-92141 Clamart, France
来源
JOURNAL OF THE SFDS | 2013年 / 154卷 / 02期
关键词
dynamic model; particle filter; sequential Monte Carlo; electricity load forecasting;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we are interested in the online prediction of the electricity load, within the Bayesian framework of dynamic models. We offer a review of sequential Monte Carlo methods, and provide the calculations needed for the derivation of so-called particles filters. We also discuss the practical issues arising from their use, and some of the variants proposed in the literature to deal with them, giving detailed algorithms whenever possible for an easy implementation. We propose an additional step to help make basic particle filters more robust with regard to outlying observations. Finally we use such a particle filter to estimate a state-space model that includes exogenous variables in order to forecast the electricity load for the customers of the French electricity company Electricite de France and discuss the various results obtained.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 51 条
[1]   Sequential MCMC for Bayesian model selection [J].
Andrieu, C ;
De Freitas, N ;
Doucet, A .
PROCEEDINGS OF THE IEEE SIGNAL PROCESSING WORKSHOP ON HIGHER-ORDER STATISTICS, 1999, :130-134
[2]   Particle Markov chain Monte Carlo methods [J].
Andrieu, Christophe ;
Doucet, Arnaud ;
Holenstein, Roman .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :269-342
[3]  
Bruhns A., 2005, P 15 POW SYST COMP C
[4]  
Cappe O., 2010, INFERENCE HIDDEN MAR
[5]   Improved particle filter for nonlinear problems [J].
Carpenter, J ;
Clifford, P ;
Fearnhead, P .
IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1999, 146 (01) :2-7
[6]   Online data processing: Comparison of Bayesian regularized particle filters [J].
Casarin, Roberto ;
Marin, Jean-Michel .
ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 :239-258
[7]  
Chen Z., 2003, BAYESIAN FILTERING K, DOI 10.1080/02331880309257
[8]  
Chopin N, 2012, J ROYAL STAT SOC B
[9]  
Cornebise J., 2009, THESIS
[10]  
DasGupta A, 2008, SPRINGER TEXTS STAT, P1